Stage-specific inhibition of TrkB activity leads to long-lasting and sexually dimorphic effects on body weight and hypothalamic gene expression.
PLoS One
; 8(11): e80781, 2013.
Article
em En
| MEDLINE
| ID: mdl-24312242
During development, prenatal and postnatal factors program homeostatic set points to regulate food intake and body weight in the adult. Combinations of genetic and environmental factors contribute to the development of neural circuitry that regulates whole-body energy homeostasis. Brain-derived neurotrophic factor (Bdnf) and its receptor, Tyrosine kinase receptor B (TrkB), are strong candidates for mediating the reshaping of hypothalamic neural circuitry, given their well-characterized role in the central regulation of feeding and body weight. Here, we employ a chemical-genetic approach using the TrkB(F616A/F616A) knock-in mouse model to define the critical developmental period in which TrkB inhibition contributes to increased adult fat mass. Surprisingly, transient TrkB inhibition in embryos, preweaning pups, and adults all resulted in long-lasting increases in body weight and fat content. Moreover, sex-specific differences in the effects of TrkB inhibition on both body weight and hypothalamic gene expression were observed at multiple developmental stages. Our results highlight both the importance of the Bdnf/TrkB pathway in maintaining normal body weight throughout life and the role of sex-specific differences in the organization of hypothalamic neural circuitry that regulates body weight.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Peso Corporal
/
Caracteres Sexuais
/
Regulação da Expressão Gênica no Desenvolvimento
/
Receptor trkB
/
Inibidores de Proteínas Quinases
/
Hipotálamo
Idioma:
En
Ano de publicação:
2013
Tipo de documento:
Article