Your browser doesn't support javascript.
loading
Direct imaging of Pt single atoms adsorbed on TiO2 (110) surfaces.
Chang, Teng-Yuan; Tanaka, Yusuke; Ishikawa, Ryo; Toyoura, Kazuaki; Matsunaga, Katsuyuki; Ikuhara, Yuichi; Shibata, Naoya.
Afiliação
  • Chang TY; Institute of Engineering Innovation, School of Engineering, the University of Tokyo , Yayoi 2-11-16, Bunkyo-ku, Tokyo 113-8656, Japan.
Nano Lett ; 14(1): 134-8, 2014 Jan 08.
Article em En | MEDLINE | ID: mdl-24351061
Noble metal nanoparticles (e.g., gold and platinum) supported on TiO2 surfaces are utilized in many technological applications such as heterogeneous catalysts. To fully understand their enhanced catalytic activity, it is essential to unravel the interfacial interaction between the metal atoms and TiO2 surfaces at the level of atomic dimensions. However, it has been extremely difficult to directly characterize the atomic-scale structures that result when individual metal atoms are adsorbed on the TiO2 surfaces. Here, we show direct atomic-resolution images of individual Pt atoms adsorbed on TiO2 (110) surfaces using aberration-corrected scanning transmission electron microscopy. Subangstrom spatial resolution enables us to identify five different Pt atom adsorption sites on the TiO2 (110) surface. Combining this with systematic density functional theory calculations reveals that the most favorable Pt adsorption sites are on vacancy sites of basal oxygen atoms that are located in subsurface positions relative to the top surface bridging oxygen atoms.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article