Your browser doesn't support javascript.
loading
A multiplex two-color real-time PCR method for quality-controlled molecular diagnostic testing of FFPE samples.
Yeo, Jiyoun; Crawford, Erin L; Blomquist, Thomas M; Stanoszek, Lauren M; Dannemiller, Rachel E; Zyrek, Jill; De Las Casas, Luis E; Khuder, Sadik A; Willey, James C.
Afiliação
  • Yeo J; Division of Pulmonary/Critical Care and Sleep Medicine, Department of Medicine, University of Toledo Health Sciences Campus, Toledo, Ohio, United States of America.
  • Crawford EL; Division of Pulmonary/Critical Care and Sleep Medicine, Department of Medicine, University of Toledo Health Sciences Campus, Toledo, Ohio, United States of America.
  • Blomquist TM; Division of Pulmonary/Critical Care and Sleep Medicine, Department of Medicine, University of Toledo Health Sciences Campus, Toledo, Ohio, United States of America.
  • Stanoszek LM; Division of Pulmonary/Critical Care and Sleep Medicine, Department of Medicine, University of Toledo Health Sciences Campus, Toledo, Ohio, United States of America.
  • Dannemiller RE; Division of Pulmonary/Critical Care and Sleep Medicine, Department of Medicine, University of Toledo Health Sciences Campus, Toledo, Ohio, United States of America.
  • Zyrek J; Department of Pathology, University of Toledo Health Sciences Campus, Toledo, Ohio, United States of America.
  • De Las Casas LE; Department of Pathology, University of Toledo Health Sciences Campus, Toledo, Ohio, United States of America.
  • Khuder SA; Division of Pulmonary/Critical Care and Sleep Medicine, Department of Medicine, University of Toledo Health Sciences Campus, Toledo, Ohio, United States of America.
  • Willey JC; Division of Pulmonary/Critical Care and Sleep Medicine, Department of Medicine, University of Toledo Health Sciences Campus, Toledo, Ohio, United States of America ; Department of Pathology, University of Toledo Health Sciences Campus, Toledo, Ohio, United States of America.
PLoS One ; 9(2): e89395, 2014.
Article em En | MEDLINE | ID: mdl-24586747
ABSTRACT

BACKGROUND:

Reverse transcription quantitative real-time PCR (RT-qPCR) tests support personalized cancer treatment through more clinically meaningful diagnosis. However, samples obtained through standard clinical pathology procedures are formalin-fixed, paraffin-embedded (FFPE) and yield small samples with low integrity RNA containing PCR interfering substances. RT-qPCR tests able to assess FFPE samples with quality control and inter-laboratory reproducibility are needed.

METHODS:

We developed an RT-qPCR method by which 1) each gene was measured relative to a known number of its respective competitive internal standard molecules to control for interfering substances, 2) two-color fluorometric hydrolysis probes enabled analysis on a real-time platform, 3) external standards controlled for variation in probe fluorescence intensity, and 4) pre-amplification maximized signal from FFPE RNA samples. Reagents were developed for four genes comprised by a previously reported lung cancer diagnostic test (LCDT) then subjected to analytical validation using synthetic native templates as test articles to assess linearity, signal-to-analyte response, lower detection threshold, imprecision and accuracy. Fitness of this method and these reagents for clinical testing was assessed in FFPE normal (N = 10) and malignant (N = 10) lung samples.

RESULTS:

Reagents for each of four genes, MYC, E2F1, CDKN1A and ACTB comprised by the LCDT had acceptable linearity (R(2)>0.99), signal-to-analyte response (slope 1.0 ± 0.05), lower detection threshold (<10 molecules) and imprecision (CV <20%). Poisson analysis confirmed accuracy of internal standard concentrations. Internal standards controlled for experimentally introduced interference, prevented false-negatives and enabled pre-amplification to increase signal without altering measured values. In the fitness for purpose testing of this two-color fluorometric LCDT using surgical FFPE samples, the diagnostic accuracy was 93% which was similar to that previously reported for analysis of fresh samples.

CONCLUSIONS:

This quality-controlled two-color fluorometric RT-qPCR approach will facilitate the development of reliable, robust RT-qPCR-based molecular diagnostic tests in FFPE clinical samples.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Técnicas de Diagnóstico Molecular / Reação em Cadeia da Polimerase Multiplex / Reação em Cadeia da Polimerase em Tempo Real Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Técnicas de Diagnóstico Molecular / Reação em Cadeia da Polimerase Multiplex / Reação em Cadeia da Polimerase em Tempo Real Idioma: En Ano de publicação: 2014 Tipo de documento: Article