Your browser doesn't support javascript.
loading
Pharmacokinetics, metabolism, and excretion of [14C]axitinib, a vascular endothelial growth factor receptor tyrosine kinase inhibitor, in humans.
Smith, Bill J; Pithavala, Yazdi; Bu, Hai-Zhi; Kang, Ping; Hee, Brian; Deese, Alan J; Pool, William F; Klamerus, Karen J; Wu, Ellen Y; Dalvie, Deepak K.
Afiliação
  • Smith BJ; Pharmacokinetics, Dynamics and Metabolism (B.J.S., H.-Z.B., P.K., W.F.P., E.Y.W., D.K.D.), Pfizer Oncology-Clinical Pharmacology (Y.P., B.H., K.J.K.), and Pharmaceutical Sciences (A.J.D.), Pfizer Inc., Worldwide Research and Development, La Jolla Laboratories, San Diego, CA.
Drug Metab Dispos ; 42(5): 918-31, 2014 May.
Article em En | MEDLINE | ID: mdl-24608633
The disposition of a single oral dose of 5 mg (100 µCi) of [(14)C]axitinib was investigated in fasted healthy human subjects (N = 8). Axitinib was rapidly absorbed, with a median plasma Tmax of 2.2 hours and a geometric mean Cmax and half-life of 29.2 ng/ml and 10.6 hours, respectively. The plasma total radioactivity-time profile was similar to that of axitinib but the AUC was greater, suggesting the presence of metabolites. The major metabolites in human plasma (0-12 hours), identified as axitinib N-glucuronide (M7) and axitinib sulfoxide (M12), were pharmacologically inactive, and with axitinib comprised 50.4%, 16.2%, and 22.5% of the radioactivity, respectively. In excreta, the majority of radioactivity was recovered in most subjects by 48 hours postdose. The median radioactivity excreted in urine, feces, and total recovery was 22.7%, 37.0%, and 59.7%, respectively. The recovery from feces was variable across subjects (range, 2.5%-60.2%). The metabolites identified in urine were M5 (carboxylic acid), M12 (sulfoxide), M7 (N-glucuronide), M9 (sulfoxide/N-oxide), and M8a (methylhydroxy glucuronide), accounting for 5.7%, 3.5%, 2.6%, 1.7%, and 1.3% of the dose, respectively. The drug-related products identified in feces were unchanged axitinib, M14/15 (mono-oxidation/sulfone), M12a (epoxide), and an unidentified metabolite, comprising 12%, 5.7%, 5.1%, and 5.0% of the dose, respectively. The proposed mechanism to form M5 involved a carbon-carbon bond cleavage via M12a, followed by rearrangement to a ketone intermediate and subsequent Baeyer-Villiger rearrangement, possibly through a peroxide intermediate. In summary, the study characterized axitinib metabolites in circulation and primary elimination pathways of the drug, which were mainly oxidative in nature.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Tirosina Quinases / Receptores de Fatores de Crescimento do Endotélio Vascular / Inibidores de Proteínas Quinases / Imidazóis / Indazóis Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Tirosina Quinases / Receptores de Fatores de Crescimento do Endotélio Vascular / Inibidores de Proteínas Quinases / Imidazóis / Indazóis Idioma: En Ano de publicação: 2014 Tipo de documento: Article