Your browser doesn't support javascript.
loading
Correlation Between Activation of the Prelimbic Cortex, Basolateral Amygdala, and Agranular Insular Cortex During Taste Memory Formation.
Uematsu, Akira; Kitamura, Akihiko; Iwatsuki, Ken; Uneyama, Hisayuki; Tsurugizawa, Tomokazu.
Afiliação
  • Uematsu A; Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan Current address: Laboratory for Neural Circuitry of Memory, RIKEN Brain Science Institute, Saitama 351-0198, Japan.
  • Kitamura A; Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan.
  • Iwatsuki K; Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan Current address: Department of Nutritional Science and Food Safety, Tokyo University of Agriculture, Tokyo 156-8502, Japan.
  • Uneyama H; Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan.
  • Tsurugizawa T; Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan.
Cereb Cortex ; 25(9): 2719-28, 2015 Sep.
Article em En | MEDLINE | ID: mdl-24735672
Conditioned taste aversion (CTA) is a well-established learning paradigm, whereby animals associate tastes with subsequent visceral illness. The prelimbic cortex (PL) has been shown to be involved in the association of events separated by time. However, the nature of PL activity and its functional network in the whole brain during CTA learning remain unknown. Here, using awake functional magnetic resonance imaging and fiber tracking, we analyzed functional brain connectivity during the association of tastes and visceral illness. The blood oxygen level-dependent (BOLD) signal significantly increased in the PL after tastant and lithium chloride (LiCl) infusions. The BOLD signal in the PL significantly correlated with those in the amygdala and agranular insular cortex (IC), which we found were also structurally connected to the PL by fiber tracking. To precisely examine these data, we then performed double immunofluorescence with a neuronal activity marker (c-Fos) and an inhibitory neuron marker (GAD67) combined with a fluorescent retrograde tracer in the PL. During CTA learning, we found an increase in the activity of excitatory neurons in the basolateral amygdala (BLA) or agranular IC that project to the PL. Taken together, these findings clearly identify a role of synchronized PL, agranular IC, and BLA activity in CTA learning.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Paladar / Córtex Cerebral / Complexo Nuclear Basolateral da Amígdala / Lobo Límbico / Memória Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Paladar / Córtex Cerebral / Complexo Nuclear Basolateral da Amígdala / Lobo Límbico / Memória Idioma: En Ano de publicação: 2015 Tipo de documento: Article