Your browser doesn't support javascript.
loading
Neuroplasticity of prehensile neural networks after quadriplegia.
Di Rienzo, F; Guillot, A; Mateo, S; Daligault, S; Delpuech, C; Rode, G; Collet, C.
Afiliação
  • Di Rienzo F; Université de Lyon, Université Claude Bernard Lyon 1, Performance Motrice, Mentale et du Matériel (P3M), Centre de Recherche et d'Innovation sur le Sport (EA 647), F-69622 Villeurbanne, France.
  • Guillot A; Université de Lyon, Université Claude Bernard Lyon 1, Performance Motrice, Mentale et du Matériel (P3M), Centre de Recherche et d'Innovation sur le Sport (EA 647), F-69622 Villeurbanne, France; Institut Universitaire de France, F-75000 Paris, France.
  • Mateo S; Université de Lyon, Université Claude Bernard Lyon 1, Performance Motrice, Mentale et du Matériel (P3M), Centre de Recherche et d'Innovation sur le Sport (EA 647), F-69622 Villeurbanne, France; Hôpital Henri Gabrielle, Hospices Civils de Lyon, F-69230 Saint Genis-Laval, France.
  • Daligault S; CERMEP imagerie du vivant, Département MEG, F-69677 Bron, France.
  • Delpuech C; CERMEP imagerie du vivant, Département MEG, F-69677 Bron, France; INSERM U1028, CNRS UMR5292, Centre des neurosciences de Lyon, F-69000 Lyon, France.
  • Rode G; Hôpital Henri Gabrielle, Hospices Civils de Lyon, F-69230 Saint Genis-Laval, France; INSERM U1028, CNRS UMR5292, Centre des neurosciences de Lyon, F-69000 Lyon, France.
  • Collet C; Université de Lyon, Université Claude Bernard Lyon 1, Performance Motrice, Mentale et du Matériel (P3M), Centre de Recherche et d'Innovation sur le Sport (EA 647), F-69622 Villeurbanne, France. Electronic address: christian.collet@univ-lyon1.fr.
Neuroscience ; 274: 82-92, 2014 Aug 22.
Article em En | MEDLINE | ID: mdl-24857709
Targeting cortical neuroplasticity through rehabilitation-based practice is believed to enhance functional recovery after spinal cord injury (SCI). While prehensile performance is severely disturbed after C6-C7 SCI, subjects with tetraplegia can learn a compensatory passive prehension using the tenodesis effect. During tenodesis, an active wrist extension triggers a passive flexion of the fingers allowing grasping. We investigated whether motor imagery training could promote activity-dependent neuroplasticity and improve prehensile tenodesis performance. SCI participants (n=6) and healthy participants (HP, n=6) took part in a repeated measurement design. After an extended baseline period of 3 weeks including repeated magnetoencephalography (MEG) measurements, MI training was embedded within the classical course of physiotherapy for 5 additional weeks (three sessions per week). An immediate MEG post-test and a follow-up at 2 months were performed. Before MI training, compensatory activations and recruitment of deafferented cortical regions characterized the cortical activity during actual and imagined prehension in SCI participants. After MI training, MEG data yielded reduced compensatory activations. Cortical recruitment became similar to that in HP. Behavioral analysis evidenced decreased movement variability suggesting motor learning of tenodesis. Data suggest that MI training participated to reverse compensatory neuroplasticity in SCI participants, and promoted the integration of new upper limb prehensile coordination in the neural networks functionally dedicated to the control of healthy prehension before injury.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Quadriplegia / Encéfalo / Modalidades de Fisioterapia / Imaginação / Rede Nervosa / Plasticidade Neuronal Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Quadriplegia / Encéfalo / Modalidades de Fisioterapia / Imaginação / Rede Nervosa / Plasticidade Neuronal Idioma: En Ano de publicação: 2014 Tipo de documento: Article