Your browser doesn't support javascript.
loading
Enhancement of light-extraction efficiency of organic light-emitting diodes using silica nanoparticles embedded in TiO2 matrices.
Opt Express ; 22 Suppl 3: A705-14, 2014 May 05.
Article em En | MEDLINE | ID: mdl-24922378
ABSTRACT
We investigate two types of internal light-extraction layer structures for organic light-emitting diodes (OLEDs) that consist of silica nanoparticles (NPs) embedded in high-refractive-index TiO2 matrices. The composite of silica NPs and TiO2 matrices was coated on the glass substrate and fabricated with and without a SiO2 planarization layer. An increase in the optical out-coupling efficiency by a factor of 2.0 was obtained at a high luminance of 3,000 cd/m² from OLEDs containing the silica NPs embedded in TiO2 matrices between glass substrates and Zn-doped In2O3 (IZO) electrodes after additional planarization processes. This is consistent with the analytical result using the finite-difference time-domain (FDTD) method. Randomly distributed silica NPs acting as scattering centers could reduce the optical loss when extracting light. By using additional planarization processes with a PECVD-derived SiO2 layer, one can assure that smoother surfaces provide higher out-coupling efficiency, which attain 100% and 97% enhancements in power (lm/W) and current (cd/A) efficiencies, respectively.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article