Your browser doesn't support javascript.
loading
Sub-nanometer atomic layer deposition for spintronics in magnetic tunnel junctions based on graphene spin-filtering membranes.
ACS Nano ; 8(8): 7890-5, 2014 Aug 26.
Article em En | MEDLINE | ID: mdl-24988469
ABSTRACT
We report on the successful integration of low-cost, conformal, and versatile atomic layer deposited (ALD) dielectric in Ni­Al2O3­Co magnetic tunnel junctions (MTJs) where the Ni is coated with a spin-filtering graphene membrane. The ALD tunnel barriers, as thin as 0.6 nm, are grown layer-by-layer in a simple, low-vacuum, ozone-based process, which yields high-quality electron-transport barriers as revealed by tunneling characterization. Even under these relaxed conditions, including air exposure of the interfaces, a significant tunnel magnetoresistance is measured highlighting the robustness of the process. The spin-filtering effect of graphene is enhanced, leading to an almost fully inversed spin polarization for the Ni electrode of −42%. This unlocks the potential of ALD for spintronics with conformal, layer-by-layer control of tunnel barriers in magnetic tunnel junctions toward low-cost fabrication and down-scaling of tunnel resistances.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article