Your browser doesn't support javascript.
loading
Large-scale genomic analysis of codon usage in dengue virus and evaluation of its phylogenetic dependence.
Lara-Ramírez, Edgar E; Salazar, Ma Isabel; López-López, María de Jesús; Salas-Benito, Juan Santiago; Sánchez-Varela, Alejandro; Guo, Xianwu.
Afiliação
  • Lara-Ramírez EE; Laboratory of Molecular Biomedicine, Center of Biotechnology on Genomics, National Polytechnic Institute, Colonia Narciso Mendoza, 88710 Reynosa, TAMPS, Mexico.
  • Salazar MI; Laboratory for Cellular Immunology and Immunopathogenesis, Department of Immunology, National School for Biological Sciences (ENCB), National Polytechnic Institute, 11340 New Mexico, DF, Mexico.
  • López-López Mde J; Laboratory of Molecular Biomedicine, Center of Biotechnology on Genomics, National Polytechnic Institute, Colonia Narciso Mendoza, 88710 Reynosa, TAMPS, Mexico.
  • Salas-Benito JS; Laboratory for Biomedicine, Department of Virology, National School of Medicine and Homeopathy, National Polytechnic Institute, 11340 New Mexico, DF, Mexico.
  • Sánchez-Varela A; Laboratory of Molecular Biomedicine, Center of Biotechnology on Genomics, National Polytechnic Institute, Colonia Narciso Mendoza, 88710 Reynosa, TAMPS, Mexico.
  • Guo X; Laboratory of Molecular Biomedicine, Center of Biotechnology on Genomics, National Polytechnic Institute, Colonia Narciso Mendoza, 88710 Reynosa, TAMPS, Mexico.
Biomed Res Int ; 2014: 851425, 2014.
Article em En | MEDLINE | ID: mdl-25136631
ABSTRACT
The increasing number of dengue virus (DENV) genome sequences available allows identifying the contributing factors to DENV evolution. In the present study, the codon usage in serotypes 1-4 (DENV1-4) has been explored for 3047 sequenced genomes using different statistics methods. The correlation analysis of total GC content (GC) with GC content at the three nucleotide positions of codons (GC1, GC2, and GC3) as well as the effective number of codons (ENC, ENCp) versus GC3 plots revealed mutational bias and purifying selection pressures as the major forces influencing the codon usage, but with distinct pressure on specific nucleotide position in the codon. The correspondence analysis (CA) and clustering analysis on relative synonymous codon usage (RSCU) within each serotype showed similar clustering patterns to the phylogenetic analysis of nucleotide sequences for DENV1-4. These clustering patterns are strongly related to the virus geographic origin. The phylogenetic dependence analysis also suggests that stabilizing selection acts on the codon usage bias. Our analysis of a large scale reveals new feature on DENV genomic evolution.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Filogenia / Códon / Evolução Molecular / Vírus da Dengue Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Filogenia / Códon / Evolução Molecular / Vírus da Dengue Idioma: En Ano de publicação: 2014 Tipo de documento: Article