Your browser doesn't support javascript.
loading
Modelling and experimental investigation on the application of water super adsorbents in waste air biofilters.
Danaee, Soroosh; Fazaelipoor, Mohammad Hassan; Gholami, Abdollah; Ataei, Seyed Ahmad; Afzali, Daryoush.
Afiliação
  • Danaee S; a Department of Chemical Engineering, Faculty of Engineering , Shahid Bahonar University of Kerman , Kerman , Iran.
Environ Technol ; 36(1-4): 377-85, 2015.
Article em En | MEDLINE | ID: mdl-25347218
ABSTRACT
In this research work, a synthetic water super absorbent polymer was included in the bed of a perlite-based biofilter for the removal of ethanol from air. The performance of this biofilter was compared with the performance of a control perlite-based biofilter lacking the water super absorbent. With the empty bed residence time of 2 min, both biofilters were able to remove more than 90% of the entering pollutant with the concentration of 1 g /m3, when regular moistening was applied. After last irrigation on day 23, the performance of the control biofilter was unchanged until day 35. From day 36 onwards, the control biofilter lost its activity gradually and became totally inactive on day 45. The performance of the super absorbent containing biofilter, however, was unchanged until day 58 before starting to lose its activity. A mechanistic model was developed to describe the performance of a biofilter under drying effects. The model could predict the trends of experimental results reasonably well. The model was also applied to predict the trends of experimental data from a published paper on the removal of hexane in a perlite/super absorbent containing biofilter.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Polímeros / Ultrafiltração / Fenômenos Fisiológicos Bacterianos / Etanol / Membranas Artificiais / Modelos Biológicos Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Polímeros / Ultrafiltração / Fenômenos Fisiológicos Bacterianos / Etanol / Membranas Artificiais / Modelos Biológicos Idioma: En Ano de publicação: 2015 Tipo de documento: Article