Your browser doesn't support javascript.
loading
BiFeO3 epitaxial thin films and devices: past, present and future.
Sando, D; Barthélémy, A; Bibes, M.
Afiliação
  • Sando D; Unité Mixte de Physique CNRS/Thales, 1 Avenue Fresnel, Campus de l'Ecole Polytechnique, 91767 Palaiseau, France, and Université Paris Sud, 91405 Orsay, France. Center for Correlated Electron Systems, Institute for Basic Science (IBS), and Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Republic of Korea.
J Phys Condens Matter ; 26(47): 473201, 2014 Nov 26.
Article em En | MEDLINE | ID: mdl-25352066
The celebrated renaissance of the multiferroics family over the past ten years has also been that of its most paradigmatic member, bismuth ferrite (BiFeO3). Known since the 1960s to be a high temperature antiferromagnet and since the 1970s to be ferroelectric, BiFeO3 only had its bulk ferroic properties clarified in the mid-2000s. It is however the fabrication of BiFeO3 thin films and their integration into epitaxial oxide heterostructures that have fully revealed its extraordinarily broad palette of functionalities. Here we review the first decade of research on BiFeO3 films, restricting ourselves to epitaxial structures. We discuss how thickness and epitaxial strain influence not only the unit cell parameters, but also the crystal structure, illustrated for instance by the discovery of the so-called T-like phase of BiFeO3. We then present its ferroelectric and piezoelectric properties and their evolution near morphotropic phase boundaries. Magnetic properties and their modification by thickness and strain effects, as well as optical parameters, are covered. Finally, we highlight various types of devices based on BiFeO3 in electronics, spintronics, and optics, and provide perspectives for the development of further multifunctional devices for information technology and energy harvesting.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article