Your browser doesn't support javascript.
loading
Phases in the temporal multiscale evolution of the drug release mechanism in IPN-type chitosan based hydrogels.
Bacaita, E S; Ciobanu, B C; Popa, M; Agop, M; Desbrieres, J.
Afiliação
  • Bacaita ES; Department of Physics, "Gheorghe Asachi" Technical University of Iasi, Prof. Dr. docent Dimitrie Mangeron Rd., No. 73, Iasi 700050, Romania. bsimona77@yahoo.com.
Phys Chem Chem Phys ; 16(47): 25896-905, 2014 Dec 21.
Article em En | MEDLINE | ID: mdl-25355433
ABSTRACT
The study proposes modeling calcein release kinetics (considered as a hydrophilic drug model) from an interpenetrating network matrix of hydrogels, based on the combination of two polymers, of which chitosan is the most commonly used polymer. The release process is analyzed for different increasing time intervals, based on the evolution of the release kinetics. For each time interval, a dominant release mechanism was identified and quantitative analyses were performed, to probe the existence of four distinct stages during its evolution with each stage governed by a different kinetics model. An interesting and original aspect, which is analyzed through a novel approach, is that of drug release at longer time scales, which is often overlooked. It revealed that the system behaves as a complex one and its evolution can be described through a nonlinear theoretical model, which offers us new insights into its order-disorder evolution.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Hidrogéis / Quitosana / Fluoresceínas Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Hidrogéis / Quitosana / Fluoresceínas Idioma: En Ano de publicação: 2014 Tipo de documento: Article