Your browser doesn't support javascript.
loading
Enhanced collisionless shock formation in a magnetized plasma containing a density gradient.
Clark, S E; Everson, E T; Schaeffer, D B; Bondarenko, A S; Constantin, C G; Niemann, C; Winske, D.
Afiliação
  • Clark SE; Department of Physics and Astronomy, University of California-Los Angeles, Los Angeles, California 90095, USA.
  • Everson ET; Department of Physics and Astronomy, University of California-Los Angeles, Los Angeles, California 90095, USA.
  • Schaeffer DB; Department of Physics and Astronomy, University of California-Los Angeles, Los Angeles, California 90095, USA.
  • Bondarenko AS; Department of Physics and Astronomy, University of California-Los Angeles, Los Angeles, California 90095, USA.
  • Constantin CG; Department of Physics and Astronomy, University of California-Los Angeles, Los Angeles, California 90095, USA.
  • Niemann C; Department of Physics and Astronomy, University of California-Los Angeles, Los Angeles, California 90095, USA.
  • Winske D; Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
Article em En | MEDLINE | ID: mdl-25375430
Two-dimensional hybrid simulations of super-Alfvénic expanding debris plasma interacting with an inhomogeneous ambient plasma are presented. The simulations demonstrate improved collisionless coupling of energy to the ambient ions when encountering a density gradient. Simulations of an expanding cylinder running into a step function gradient are performed and compared to a simple analytical theory. Magnetic flux probe data from a laboratory shock experiment are compared to a simulation with a more realistic debris expansion and ambient ion density. The simulation confirms that a shock is formed and propagates within the high density region of ambient plasma.
Buscar no Google
Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article