Your browser doesn't support javascript.
loading
Novel role for galectin-1 in T-cells under physiological and pathological conditions.
Deák, Magdolna; Hornung, Ákos; Novák, Julianna; Demydenko, Dmytro; Szabó, Eniko; Czibula, Ágnes; Fajka-Boja, Roberta; Kriston-Pál, Éva; Monostori, Éva; Kovács, László.
Afiliação
  • Deák M; Department of Rheumatology, University of Szeged, Faculty of Medicine, Albert Szent-Györgyi Health Centre, Szeged, Hungary.
  • Hornung Á; Department of Rheumatology, University of Szeged, Faculty of Medicine, Albert Szent-Györgyi Health Centre, Szeged, Hungary; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
  • Novák J; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
  • Demydenko D; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
  • Szabó E; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
  • Czibula Á; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
  • Fajka-Boja R; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
  • Kriston-Pál É; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
  • Monostori É; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary. Electronic address: monostori.eva@brc.mta.hu.
  • Kovács L; Department of Rheumatology, University of Szeged, Faculty of Medicine, Albert Szent-Györgyi Health Centre, Szeged, Hungary. Electronic address: kovacs.laszlo@med.u-szeged.hu.
Immunobiology ; 220(4): 483-9, 2015 Apr.
Article em En | MEDLINE | ID: mdl-25468561
ABSTRACT
Secreted, extracellular galectin-1 (exGal-1) but not intracellular Gal-1 (inGal-1) has been described as a strong immunosuppressive protein due to its major activity of inducing apoptosis of activated T-cells. It has previously been reported that T-cells express Gal-1 upon activation, however its participation in T-cell functions has remained largely elusive. To determine function of Gal-1 expressed by activated T-cells we have carried out a series of experiments. We have shown that Gal-1, expressed in Gal-1-transgenic Jurkat cells or in activated T-cells, remained intracellularly indicating that Gal-1-induced T-cell death was not a result of an autocrine effect of the de novo expressed Gal-1. Rather, a particular consequence of the inGal-1 expression was that T-cells became more sensitive to exGal-1 added either as a soluble protein or bound to the surface of a Gal-1-secreting effector cell. This was also verified when the susceptibility of activated T-cells from wild type or Gal-1 knockout mice to Gal-1-induced apoptosis were compared. Murine T-cells expressing Gal-1 were more sensitive to the cytotoxicity of the exGal-1 than their Gal-1 knockout counterparts. We also conducted a study with activated T-cells from patients with systemic lupus erythematosus (SLE), a disease in which dysregulated T-cell apoptosis has been well described. SLE T-cells expressed lower amounts of Gal-1 than healthy T-cells and were less sensitive to exGal-1. These results suggested a novel role of inGal-1 in T-cells as a regulator of T-cell response to exGal-1, and its likely contribution to the mechanism in T-cell apoptosis deficiency in lupus.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Linfócitos T / Galectina 1 Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Linfócitos T / Galectina 1 Idioma: En Ano de publicação: 2015 Tipo de documento: Article