Your browser doesn't support javascript.
loading
Clinical application of a silk fibroin protein biologic scaffold for abdominal wall fascial reinforcement.
Clemens, Mark W; Downey, Susan; Agullo, Frank; Lehfeldt, Max R; Kind, Gabriel M; Palladino, Humberto; Marshall, Deirdre; Jewell, Mark L; Mathur, Anshu B; Bengtson, Bradley P.
Afiliação
  • Clemens MW; Department of Plastic Surgery, MD Anderson Cancer Center, The University of Texas, Houston, Tex.; Department of Plastic Surgery, University of Southern California, Keck School of Medicine, Los Angeles, Calif.; Southwest Plastic Surgery, El Paso, Tex.; Paul L. Foster School of Medicine, Texas Tech Un
  • Downey S; Department of Plastic Surgery, MD Anderson Cancer Center, The University of Texas, Houston, Tex.; Department of Plastic Surgery, University of Southern California, Keck School of Medicine, Los Angeles, Calif.; Southwest Plastic Surgery, El Paso, Tex.; Paul L. Foster School of Medicine, Texas Tech Un
  • Agullo F; Department of Plastic Surgery, MD Anderson Cancer Center, The University of Texas, Houston, Tex.; Department of Plastic Surgery, University of Southern California, Keck School of Medicine, Los Angeles, Calif.; Southwest Plastic Surgery, El Paso, Tex.; Paul L. Foster School of Medicine, Texas Tech Un
  • Lehfeldt MR; Department of Plastic Surgery, MD Anderson Cancer Center, The University of Texas, Houston, Tex.; Department of Plastic Surgery, University of Southern California, Keck School of Medicine, Los Angeles, Calif.; Southwest Plastic Surgery, El Paso, Tex.; Paul L. Foster School of Medicine, Texas Tech Un
  • Kind GM; Department of Plastic Surgery, MD Anderson Cancer Center, The University of Texas, Houston, Tex.; Department of Plastic Surgery, University of Southern California, Keck School of Medicine, Los Angeles, Calif.; Southwest Plastic Surgery, El Paso, Tex.; Paul L. Foster School of Medicine, Texas Tech Un
  • Palladino H; Department of Plastic Surgery, MD Anderson Cancer Center, The University of Texas, Houston, Tex.; Department of Plastic Surgery, University of Southern California, Keck School of Medicine, Los Angeles, Calif.; Southwest Plastic Surgery, El Paso, Tex.; Paul L. Foster School of Medicine, Texas Tech Un
  • Marshall D; Department of Plastic Surgery, MD Anderson Cancer Center, The University of Texas, Houston, Tex.; Department of Plastic Surgery, University of Southern California, Keck School of Medicine, Los Angeles, Calif.; Southwest Plastic Surgery, El Paso, Tex.; Paul L. Foster School of Medicine, Texas Tech Un
  • Jewell ML; Department of Plastic Surgery, MD Anderson Cancer Center, The University of Texas, Houston, Tex.; Department of Plastic Surgery, University of Southern California, Keck School of Medicine, Los Angeles, Calif.; Southwest Plastic Surgery, El Paso, Tex.; Paul L. Foster School of Medicine, Texas Tech Un
  • Mathur AB; Department of Plastic Surgery, MD Anderson Cancer Center, The University of Texas, Houston, Tex.; Department of Plastic Surgery, University of Southern California, Keck School of Medicine, Los Angeles, Calif.; Southwest Plastic Surgery, El Paso, Tex.; Paul L. Foster School of Medicine, Texas Tech Un
  • Bengtson BP; Department of Plastic Surgery, MD Anderson Cancer Center, The University of Texas, Houston, Tex.; Department of Plastic Surgery, University of Southern California, Keck School of Medicine, Los Angeles, Calif.; Southwest Plastic Surgery, El Paso, Tex.; Paul L. Foster School of Medicine, Texas Tech Un
Plast Reconstr Surg Glob Open ; 2(11): e246, 2014 Nov.
Article em En | MEDLINE | ID: mdl-25506529
ABSTRACT

BACKGROUND:

Preclinical studies have demonstrated that macroporous silk fibroin protein scaffolds are capable of promoting physiologically durable supportive tissue, which favors application of these engineered tissues for clinical implantation. The safety and effectiveness of a long-lasting, transitory, 510(k)-cleared purified silk fibroin biologic scaffold (SBS) are investigated for soft-tissue support and repair of the abdominal wall.

METHODS:

We conducted a multicenter retrospective review of all consecutive patients who underwent abdominal wall soft-tissue reinforcement with an SBS device between 2011 and 2013. Indications, comorbid conditions, surgical technique, complications, and outcomes were evaluated.

RESULTS:

We reviewed the records of 172 consecutive patients who received an SBS for soft-tissue support. Of those, 77 patients underwent abdominal wall fascial repair, with a mean follow-up of 18.4 ± 7.5 months. Procedures using an SBS included reinforcement of an abdominal-based flap donor site (31.2%), ventral hernia repair (53.2%), and abdominoplasty (15.6%). The overall complication rate was 6.5%, consisting of 2 wound dehiscences, 1 with device exposure, 1 seroma, 1 infection with explantation, and a perioperative bulge requiring reoperation. There were no reports of hernia.

CONCLUSIONS:

Postoperative complication rates after 18 months were low, and most surgical complications were managed nonoperatively on an outpatient basis without mesh removal. To our knowledge, this is the only series to report on a long-lasting, transitory SBS for abdominal wall repair and reinforcement. Procedure-specific outcome studies are warranted to delineate optimal patient selection and define potential device characteristic advantages.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article