Your browser doesn't support javascript.
loading
Low-Mg(2+) treatment increases sensitivity of voltage-gated Na(+) channels to Ca(2+)/calmodulin-mediated modulation in cultured hippocampal neurons.
Guo, Feng; Zhou, Pei-Dong; Gao, Qing-Hua; Gong, Jian; Feng, Rui; Xu, Xiao-Xue; Liu, Shu-Yuan; Hu, Hui-Yuan; Zhao, Mei-Mi; Adam, Hogan-Cann; Cai, Ji-Qun; Hao, Li-Ying.
Afiliação
  • Guo F; Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China;
  • Zhou PD; Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China;
  • Gao QH; Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China;
  • Gong J; Department of Clinical Pharmacy, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China;
  • Feng R; Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China;
  • Xu XX; Department of Neurology, The First Hospital of China Medical University, Shenyang, China; and.
  • Liu SY; Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China;
  • Hu HY; Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China;
  • Zhao MM; Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China;
  • Adam HC; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada.
  • Cai JQ; Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China;
  • Hao LY; Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China;
Am J Physiol Cell Physiol ; 308(8): C594-605, 2015 Apr 15.
Article em En | MEDLINE | ID: mdl-25652447
Culture of hippocampal neurons in low-Mg(2+) medium (low-Mg(2+) neurons) results in induction of continuous seizure activity. However, the underlying mechanism of the contribution of low Mg(2+) to hyperexcitability of neurons has not been clarified. Our data, obtained using the patch-clamp technique, show that voltage-gated Na(+) channel (VGSC) activity, which is associated with a persistent, noninactivating Na(+) current (INa,P), was modulated by calmodulin (CaM) in a concentration-dependent manner in normal and low-Mg(2+) neurons, but the channel activity was more sensitive to Ca(2+)/CaM regulation in low-Mg(2+) than normal neurons. The increased sensitivity of VGSCs in low-Mg(2+) neurons was partially retained when CaM12 and CaM34, CaM mutants with disabled binding sites in the N or C lobe, were used but was diminished when CaM1234, a CaM mutant in which all four Ca(2+) sites are disabled, was used, indicating that functional Ca(2+)-binding sites from either lobe of CaM are required for modulation of VGSCs in low-Mg(2+) neurons. Furthermore, the number of neurons exhibiting colocalization of CaM with the VGSC subtypes NaV1.1, NaV1.2, and NaV1.3 was significantly higher in low- Mg(2+) than normal neurons, as shown by immunofluorescence. Our main finding is that low-Mg(2+) treatment increases sensitivity of VGSCs to Ca(2+)/CaM-mediated regulation. Our data reveal that CaM, as a core regulating factor, connects the functional roles of the three main intracellular ions, Na(+), Ca(2+), and Mg(2+), by modulating VGSCs and provides a possible explanation for the seizure discharge observed in low-Mg(2+) neurons.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Convulsões / Calmodulina / Cálcio / Canais de Sódio Disparados por Voltagem / Hipocampo / Magnésio Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Convulsões / Calmodulina / Cálcio / Canais de Sódio Disparados por Voltagem / Hipocampo / Magnésio Idioma: En Ano de publicação: 2015 Tipo de documento: Article