Your browser doesn't support javascript.
loading
Monitoring vascular permeability and remodeling after endothelial injury in a murine model using a magnetic resonance albumin-binding contrast agent.
Lavin, Begoña; Phinikaridou, Alkystis; Lorrio, Silvia; Zaragoza, Carlos; Botnar, René M.
Afiliação
  • Lavin B; From the Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom (B.L., A.P., S.L., R.M.B.); The British Heart Foundation Centre of Excellence, Cardiovascular Division (B.L., A.P., R.M.B.) and Wellcome Trust
  • Phinikaridou A; From the Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom (B.L., A.P., S.L., R.M.B.); The British Heart Foundation Centre of Excellence, Cardiovascular Division (B.L., A.P., R.M.B.) and Wellcome Trust
  • Lorrio S; From the Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom (B.L., A.P., S.L., R.M.B.); The British Heart Foundation Centre of Excellence, Cardiovascular Division (B.L., A.P., R.M.B.) and Wellcome Trust
  • Zaragoza C; From the Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom (B.L., A.P., S.L., R.M.B.); The British Heart Foundation Centre of Excellence, Cardiovascular Division (B.L., A.P., R.M.B.) and Wellcome Trust
  • Botnar RM; From the Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom (B.L., A.P., S.L., R.M.B.); The British Heart Foundation Centre of Excellence, Cardiovascular Division (B.L., A.P., R.M.B.) and Wellcome Trust
Article em En | MEDLINE | ID: mdl-25873720
BACKGROUND: Despite the beneficial effects of vascular interventions, these procedures may damage the endothelium leading to increased vascular permeability and remodeling. Re-endothelialization of the vessel wall, with functionally and structurally intact cells, is controlled by endothelial nitric oxide synthase (NOS3) and is crucial for attenuating adverse effects after injury. We investigated the applicability of the albumin-binding MR contrast agent, gadofosveset, to noninvasively monitor focal changes in vascular permeability and remodeling, after injury, in NOS3-knockout (NOS3(-/-)) and wild-type (WT) mice in vivo. METHODS AND RESULTS: WT and NOS3(-/-) mice were imaged at 7, 15, and 30 days after aortic denudation or sham-surgery. T1 mapping (R1=1/T1, s(-1)) and delayed-enhanced MRI were used as measurements of vascular permeability (R1) and remodeling (vessel wall enhancement, mm(2)) after gadofosveset injection, respectively. Denudation resulted in higher vascular permeability and vessel wall enhancement 7 days after injury in both strains compared with sham-operated animals. However, impaired re-endothelialization and increased neovascularization in NOS3(-/-) mice resulted in significantly higher R1 at 15 and 30 days post injury compared with WT mice that showed re-endothelialization and lack of neovascularization (R1 [s(-1)]=15 days: NOS3 (-/-)4.02 [interquartile range, IQR, 3.77-4.41] versus WT2.39 [IQR, 2.35-2.92]; 30 days: NOS3 (-/-)4.23 [IQR, 3.94-4.68] versus WT2.64 [IQR, 2.33-2.80]). Similarly, vessel wall enhancement was higher in NOS3(-/-) but recovered in WT mice (area [mm(2)]=15 days: NOS3 (-/-)5.20 [IQR, 4.68-6.80] versus WT2.13 [IQR, 0.97-3.31]; 30 days: NOS3 (-/-)7.35 [IQR, 5.66-8.61] versus WT1.60 [IQR, 1.40-3.18]). Ex vivo histological studies corroborated the MRI findings. CONCLUSIONS: We demonstrate that increased vascular permeability and remodeling, after injury, can be assessed noninvasively using an albumin-binding MR contrast agent and may be used as surrogate markers for evaluating the healing response of the vessel wall after injury.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Compostos Organometálicos / Permeabilidade Capilar / Endotélio Vascular / Angiografia por Ressonância Magnética / Meios de Contraste / Remodelação Vascular / Gadolínio Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Compostos Organometálicos / Permeabilidade Capilar / Endotélio Vascular / Angiografia por Ressonância Magnética / Meios de Contraste / Remodelação Vascular / Gadolínio Idioma: En Ano de publicação: 2015 Tipo de documento: Article