Your browser doesn't support javascript.
loading
Full Fatty Acid Amide Hydrolase Inhibition Combined with Partial Monoacylglycerol Lipase Inhibition: Augmented and Sustained Antinociceptive Effects with Reduced Cannabimimetic Side Effects in Mice.
Ghosh, Sudeshna; Kinsey, Steven G; Liu, Qing-Song; Hruba, Lenka; McMahon, Lance R; Grim, Travis W; Merritt, Christina R; Wise, Laura E; Abdullah, Rehab A; Selley, Dana E; Sim-Selley, Laura J; Cravatt, Benjamin F; Lichtman, Aron H.
Afiliação
  • Ghosh S; Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (S.G., T.W.G., C.R.M., L.E.W., R.A.A., D.E.S., L.J.S.-S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); Department of Pharmacology and
  • Kinsey SG; Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (S.G., T.W.G., C.R.M., L.E.W., R.A.A., D.E.S., L.J.S.-S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); Department of Pharmacology and
  • Liu QS; Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (S.G., T.W.G., C.R.M., L.E.W., R.A.A., D.E.S., L.J.S.-S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); Department of Pharmacology and
  • Hruba L; Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (S.G., T.W.G., C.R.M., L.E.W., R.A.A., D.E.S., L.J.S.-S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); Department of Pharmacology and
  • McMahon LR; Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (S.G., T.W.G., C.R.M., L.E.W., R.A.A., D.E.S., L.J.S.-S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); Department of Pharmacology and
  • Grim TW; Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (S.G., T.W.G., C.R.M., L.E.W., R.A.A., D.E.S., L.J.S.-S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); Department of Pharmacology and
  • Merritt CR; Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (S.G., T.W.G., C.R.M., L.E.W., R.A.A., D.E.S., L.J.S.-S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); Department of Pharmacology and
  • Wise LE; Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (S.G., T.W.G., C.R.M., L.E.W., R.A.A., D.E.S., L.J.S.-S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); Department of Pharmacology and
  • Abdullah RA; Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (S.G., T.W.G., C.R.M., L.E.W., R.A.A., D.E.S., L.J.S.-S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); Department of Pharmacology and
  • Selley DE; Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (S.G., T.W.G., C.R.M., L.E.W., R.A.A., D.E.S., L.J.S.-S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); Department of Pharmacology and
  • Sim-Selley LJ; Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (S.G., T.W.G., C.R.M., L.E.W., R.A.A., D.E.S., L.J.S.-S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); Department of Pharmacology and
  • Cravatt BF; Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (S.G., T.W.G., C.R.M., L.E.W., R.A.A., D.E.S., L.J.S.-S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); Department of Pharmacology and
  • Lichtman AH; Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (S.G., T.W.G., C.R.M., L.E.W., R.A.A., D.E.S., L.J.S.-S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); Department of Pharmacology and
J Pharmacol Exp Ther ; 354(2): 111-20, 2015 Aug.
Article em En | MEDLINE | ID: mdl-25998048
Inhibition of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), the primary hydrolytic enzymes for the respective endocannabinoids N-arachidonoylethanolamine (AEA) and 2-arachidonylglycerol (2-AG), produces antinociception but with minimal cannabimimetic side effects. Although selective inhibitors of either enzyme often show partial efficacy in various nociceptive models, their combined blockade elicits augmented antinociceptive effects, but side effects emerge. Moreover, complete and prolonged MAGL blockade leads to cannabinoid receptor type 1 (CB1) receptor functional tolerance, which represents another challenge in this potential therapeutic strategy. Therefore, the present study tested whether full FAAH inhibition combined with partial MAGL inhibition would produce sustained antinociceptive effects with minimal cannabimimetic side effects. Accordingly, we tested a high dose of the FAAH inhibitor PF-3845 (N-​3-​pyridinyl-​4-​[[3-​[[5-​(trifluoromethyl)-​2-​pyridinyl]oxy]phenyl]methyl]-​1-​piperidinecarboxamide; 10 mg/kg) given in combination with a low dose of the MAGL inhibitor JZL184 [4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate] (4 mg/kg) in mouse models of inflammatory and neuropathic pain. This combination of inhibitors elicited profound increases in brain AEA levels (>10-fold) but only 2- to 3-fold increases in brain 2-AG levels. This combination produced significantly greater antinociceptive effects than single enzyme inhibition and did not elicit common cannabimimetic effects (e.g., catalepsy, hypomotility, hypothermia, and substitution for Δ(9)-tetrahydrocannabinol in the drug-discrimination assay), although these side effects emerged with high-dose JZL184 (i.e., 100 mg/kg). Finally, repeated administration of this combination did not lead to tolerance to its antiallodynic actions in the carrageenan assay or CB1 receptor functional tolerance. Thus, full FAAH inhibition combined with partial MAGL inhibition reduces neuropathic and inflammatory pain states with minimal cannabimimetic effects.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Agonistas de Receptores de Canabinoides / Antagonistas de Receptores de Canabinoides / Amidoidrolases / Analgésicos / Monoacilglicerol Lipases Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Agonistas de Receptores de Canabinoides / Antagonistas de Receptores de Canabinoides / Amidoidrolases / Analgésicos / Monoacilglicerol Lipases Idioma: En Ano de publicação: 2015 Tipo de documento: Article