Your browser doesn't support javascript.
loading
FoxO1 regulates asymmetric dimethylarginine via downregulation of dimethylaminohydrolase 1 in human endothelial cells and subjects with atherosclerosis.
Menghini, Rossella; Casagrande, Viviana; Cardellini, Marina; Ballanti, Marta; Davato, Francesca; Cardolini, Iris; Stoehr, Robert; Fabrizi, Marta; Morelli, Monica; Anemona, Lucia; Bernges, Isabel; Schwedhelm, Edzard; Ippoliti, Arnaldo; Mauriello, Alessandro; Böger, Rainer H; Federici, Massimo.
Afiliação
  • Menghini R; Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy. Electronic address: menghini@med.uniroma2.it.
  • Casagrande V; Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
  • Cardellini M; Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
  • Ballanti M; Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
  • Davato F; Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
  • Cardolini I; Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
  • Stoehr R; Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
  • Fabrizi M; Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
  • Morelli M; Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy.
  • Anemona L; Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy.
  • Bernges I; Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany.
  • Schwedhelm E; Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany.
  • Ippoliti A; Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy.
  • Mauriello A; Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy.
  • Böger RH; Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany.
  • Federici M; Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; Center for Atherosclerosis, Policlinico Tor Vergata, 00133 Rome, Italy. Electronic address: federicm@uniroma2.it.
Atherosclerosis ; 242(1): 230-5, 2015 Sep.
Article em En | MEDLINE | ID: mdl-26226438
BACKGROUND AND AIMS: The O subfamily of forkhead (FoxO) 1 is a pivotal element in the regulation of endothelial activation. Compartmentalization and activity of FoxO1 is regulated by post translational modifications, but the implication in endothelial dysfunction and atherosclerosis remain controversial. Our aim was to identify FoxO1 related metabolic signatures in endothelial cells. METHODS AND RESULTS: Using metabolomics in human umbilical endothelial cells (HUVECs) overexpressing the wild type FoxO1 (FoxO1-WT), the acetylation defective mutant (FoxO1-KR), the unphosphorylated nuclear localized mutant (FoxO1-ADA) and the Green Fluorescent Protein (GFP) control vector, we identify metabolic pathways differentially affected by the different FoxO1 localization and activity. Among metabolites, asymmetric dimethylarginine (ADMA) was increased in FoxO1-ADA compared with FoxO1-WT and FoxO1-KR infected cells (p < 0.01). ADMA was further investigated to identify the molecular mechanisms to explain its link to FoxO1. We found that unrestrained FoxO1 activity leads to increase of ADMA via downregulation of its degrading enzyme, dimethylaminohydrolase (DDAH) 1. In human subjects (n = 89) the FoxO1/DDAH1/ADMA pathway marks unstable atherosclerosis. CONCLUSIONS: Our results point to ADMA as a biomarker to track deregulated FoxO1 activity in vivo.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Arginina / Doenças das Artérias Carótidas / Fatores de Transcrição Forkhead / Células Endoteliais da Veia Umbilical Humana / Amidoidrolases Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Arginina / Doenças das Artérias Carótidas / Fatores de Transcrição Forkhead / Células Endoteliais da Veia Umbilical Humana / Amidoidrolases Idioma: En Ano de publicação: 2015 Tipo de documento: Article