Your browser doesn't support javascript.
loading
High Purcell factor in fiber Bragg gratings utilizing the fundamental slow-light mode.
Opt Lett ; 40(15): 3440-3, 2015 Aug 01.
Article em En | MEDLINE | ID: mdl-26258327
ABSTRACT
We demonstrate through numerical simulations that the slow-light resonances that exist in strong, apodized fiber Bragg gratings (FBGs) fabricated with femtosecond pulses in deuterium-loaded fibers can exhibit very large intensity enhancements and Purcell factors with the proper optimization of their length. This potential is illustrated with two saturated FBGs that are less than 5 mm long and have been annealed to reduce their internal loss. The first one exhibits the largest measured Purcell factor in an all-fiber device (38.7), and the second one exhibits the largest intensity enhancement (1525). These devices are anticipated to have significant applications in quantum-dot lasers, nonlinear fiber devices, and cavity quantum-electrodynamics experiments.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2015 Tipo de documento: Article