Your browser doesn't support javascript.
loading
Characterisation of the Cullin-3 mutation that causes a severe form of familial hypertension and hyperkalaemia.
Schumacher, Frances-Rose; Siew, Keith; Zhang, Jinwei; Johnson, Clare; Wood, Nicola; Cleary, Sarah E; Al Maskari, Raya S; Ferryman, James T; Hardege, Iris; Figg, Nichola L; Enchev, Radoslav; Knebel, Axel; O'Shaughnessy, Kevin M; Kurz, Thimo.
Afiliação
  • Schumacher FR; MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK francesrose.schumacher@gmail.com kmo22@medschl.cam.ac.uk t.kurz@dundee.ac.uk.
  • Siew K; Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK.
  • Zhang J; MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK.
  • Johnson C; MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK.
  • Wood N; MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK.
  • Cleary SE; Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK.
  • Al Maskari RS; Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK.
  • Ferryman JT; Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK.
  • Hardege I; Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK.
  • Yasmin; Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK.
  • Figg NL; Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK.
  • Enchev R; Institute of Biochemistry, ETH Zürich, Zürich, Switzerland.
  • Knebel A; MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK.
  • O'Shaughnessy KM; Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK francesrose.schumacher@gmail.com kmo22@medschl.cam.ac.uk t.kurz@dundee.ac.uk.
  • Kurz T; MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK francesrose.schumacher@gmail.com kmo22@medschl.cam.ac.uk t.kurz@dundee.ac.uk.
EMBO Mol Med ; 7(10): 1285-306, 2015 Oct.
Article em En | MEDLINE | ID: mdl-26286618
Deletion of exon 9 from Cullin-3 (CUL3, residues 403-459: CUL3(Δ403-459)) causes pseudohypoaldosteronism type IIE (PHA2E), a severe form of familial hyperkalaemia and hypertension (FHHt). CUL3 binds the RING protein RBX1 and various substrate adaptors to form Cullin-RING-ubiquitin-ligase complexes. Bound to KLHL3, CUL3-RBX1 ubiquitylates WNK kinases, promoting their ubiquitin-mediated proteasomal degradation. Since WNK kinases activate Na/Cl co-transporters to promote salt retention, CUL3 regulates blood pressure. Mutations in both KLHL3 and WNK kinases cause PHA2 by disrupting Cullin-RING-ligase formation. We report here that the PHA2E mutant, CUL3(Δ403-459), is severely compromised in its ability to ubiquitylate WNKs, possibly due to altered structural flexibility. Instead, CUL3(Δ403-459) auto-ubiquitylates and loses interaction with two important Cullin regulators: the COP9-signalosome and CAND1. A novel knock-in mouse model of CUL3(WT) (/Δ403-459) closely recapitulates the human PHA2E phenotype. These mice also show changes in the arterial pulse waveform, suggesting a vascular contribution to their hypertension not reported in previous FHHt models. These findings may explain the severity of the FHHt phenotype caused by CUL3 mutations compared to those reported in KLHL3 or WNK kinases.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pseudo-Hipoaldosteronismo / Proteínas Culina / Modelos Animais de Doenças / Mutação Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pseudo-Hipoaldosteronismo / Proteínas Culina / Modelos Animais de Doenças / Mutação Idioma: En Ano de publicação: 2015 Tipo de documento: Article