Your browser doesn't support javascript.
loading
HIV-1 Nef promotes infection by excluding SERINC5 from virion incorporation.
Rosa, Annachiara; Chande, Ajit; Ziglio, Serena; De Sanctis, Veronica; Bertorelli, Roberto; Goh, Shih Lin; McCauley, Sean M; Nowosielska, Anetta; Antonarakis, Stylianos E; Luban, Jeremy; Santoni, Federico Andrea; Pizzato, Massimo.
Afiliação
  • Rosa A; University of Trento, Centre for Integrative Biology, 38123 Trento, Italy.
  • Chande A; University of Trento, Centre for Integrative Biology, 38123 Trento, Italy.
  • Ziglio S; University of Trento, Centre for Integrative Biology, 38123 Trento, Italy.
  • De Sanctis V; University of Trento, Laboratory of Biomolecular Sequence and Structure Analysis for Health, NGS facility, 38123 Trento, Italy.
  • Bertorelli R; University of Trento, Laboratory of Biomolecular Sequence and Structure Analysis for Health, NGS facility, 38123 Trento, Italy.
  • Goh SL; University of Massachusetts Medical School, Program in Molecular Medicine, Worcester, Massachusetts 01605, USA.
  • McCauley SM; University of Massachusetts Medical School, Program in Molecular Medicine, Worcester, Massachusetts 01605, USA.
  • Nowosielska A; University of Massachusetts Medical School, Program in Molecular Medicine, Worcester, Massachusetts 01605, USA.
  • Antonarakis SE; University of Geneva, Department of Genetic Medicine and Development, Geneva 1211, Switzerland.
  • Luban J; iGE3 Institute of Genetics and Genomics of Geneva, Geneva 1211, Switzerland.
  • Santoni FA; University of Massachusetts Medical School, Program in Molecular Medicine, Worcester, Massachusetts 01605, USA.
  • Pizzato M; University of Geneva, Department of Genetic Medicine and Development, Geneva 1211, Switzerland.
Nature ; 526(7572): 212-7, 2015 Oct 08.
Article em En | MEDLINE | ID: mdl-26416734
HIV-1 Nef, a protein important for the development of AIDS, has well-characterized effects on host membrane trafficking and receptor downregulation. By an unidentified mechanism, Nef increases the intrinsic infectivity of HIV-1 virions in a host-cell-dependent manner. Here we identify the host transmembrane protein SERINC5, and to a lesser extent SERINC3, as a potent inhibitor of HIV-1 particle infectivity that is counteracted by Nef. SERINC5 localizes to the plasma membrane, where it is efficiently incorporated into budding HIV-1 virions and impairs subsequent virion penetration of susceptible target cells. Nef redirects SERINC5 to a Rab7-positive endosomal compartment and thereby excludes it from HIV-1 particles. The ability to counteract SERINC5 was conserved in Nef encoded by diverse primate immunodeficiency viruses, as well as in the structurally unrelated glycosylated Gag from murine leukaemia virus. These examples of functional conservation and convergent evolution emphasize the fundamental importance of SERINC5 as a potent anti-retroviral factor.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Vírion / HIV-1 / Produtos do Gene nef do Vírus da Imunodeficiência Humana / Interações Hospedeiro-Patógeno / Proteínas de Membrana Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Vírion / HIV-1 / Produtos do Gene nef do Vírus da Imunodeficiência Humana / Interações Hospedeiro-Patógeno / Proteínas de Membrana Idioma: En Ano de publicação: 2015 Tipo de documento: Article