Recurrent viral infections associated with a homozygous CORO1A mutation that disrupts oligomerization and cytoskeletal association.
J Allergy Clin Immunol
; 137(3): 879-88.e2, 2016 Mar.
Article
em En
| MEDLINE
| ID: mdl-26476480
BACKGROUND: Coronin-1A (CORO1A) is a regulator of actin dynamics important for T-cell homeostasis. CORO1A deficiency causes T(-)B(+) natural killer-positive severe combined immunodeficiency or T-cell lymphopenia with severe viral infections. However, because all known human mutations in CORO1A abrogate protein expression, the role of the protein's functional domains in host immunity is unknown. OBJECTIVE: We sought to identify the cause of the primary immunodeficiency in 2 young adult siblings with a history of disseminated varicella, cutaneous warts, and CD4(+) T-cell lymphopenia. METHODS: We performed immunologic, genetic, and biochemical studies in the patients, family members, and healthy control subjects. RESULTS: Both patients had CD4(+) T-cell lymphopenia and decreased lymphocyte proliferation to mitogens. IgG, IgM, IgA, and specific antibody responses were normal. Whole-genome sequencing identified a homozygous frameshift mutation in CORO1A disrupting the last 2 C-terminal domains by replacing 61 amino acids with a novel 91-amino-acid sequence. The CORO1A(S401fs) mutant was expressed in the patients' lymphocytes at a level comparable with that of wild-type CORO1A in normal lymphocytes but did not oligomerize and had impaired cytoskeletal association. CORO1A(S401fs) was associated with increased filamentous actin accumulation in T cells, severely defective thymic output, and impaired T-cell survival but normal calcium flux and cytotoxicity, demonstrating the importance of CORO1A oligomerization and subcellular localization in T-cell homeostasis. CONCLUSIONS: We describe a truncating mutation in CORO1A that permits protein expression and survival into young adulthood. Our studies demonstrate the importance of intact CORO1A C-terminal domains in thymic egress and T-cell survival, as well as in defense against viral pathogens.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Citoesqueleto
/
Viroses
/
Multimerização Proteica
/
Homozigoto
/
Proteínas dos Microfilamentos
/
Mutação
Idioma:
En
Ano de publicação:
2016
Tipo de documento:
Article