Chemistry and Biology of Self-Cleaving Ribozymes.
Trends Biochem Sci
; 40(11): 648-661, 2015 Nov.
Article
em En
| MEDLINE
| ID: mdl-26481500
Self-cleaving ribozymes were discovered 30 years ago, but their biological distribution and catalytic mechanisms are only beginning to be defined. Each ribozyme family is defined by a distinct structure, with unique active sites accelerating the same transesterification reaction across the families. Biochemical studies show that general acid-base catalysis is the most common mechanism of self-cleavage, but metal ions and metabolites can be used as cofactors. Ribozymes have been discovered in highly diverse genomic contexts throughout nature, from viroids to vertebrates. Their biological roles include self-scission during rolling-circle replication of RNA genomes, co-transcriptional processing of retrotransposons, and metabolite-dependent gene expression regulation in bacteria. Other examples, including highly conserved mammalian ribozymes, suggest that many new biological roles are yet to be discovered.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
RNA Catalítico
Idioma:
En
Ano de publicação:
2015
Tipo de documento:
Article