Your browser doesn't support javascript.
loading
Quinolone resistant Aeromonas spp. as carriers and potential tracers of acquired antibiotic resistance in hospital and municipal wastewater.
Varela, Ana Rita; Nunes, Olga C; Manaia, Célia M.
Afiliação
  • Varela AR; CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
  • Nunes OC; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
  • Manaia CM; CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal. Electronic address: cmanaia@porto.ucp.pt.
Sci Total Environ ; 542(Pt A): 665-71, 2016 Jan 15.
Article em En | MEDLINE | ID: mdl-26546762
Members of the genus Aeromonas are recognized carriers of antibiotic resistance in aquatic environments. However, their importance on the spread of resistance from hospital effluents to the environment is poorly understood. Quinolone resistant Aeromonas spp. (n = 112) isolated from hospital effluent (HE) and from raw (RWW) and treated wastewater (TWW) of the receiving urban wastewater treatment plant (UWTP) were characterized. Species identification and genetic intraspecies diversity were assessed based on the 16S rRNA, cpn60 and gyrB genes sequence analysis. The antibiotic resistance phenotypes and genotypes (qnrA, qnrB, qnrC, qnrD, qnrS, qnrVC; qepA; oqxAB; aac(6')-Ib-cr; blaOXA; incU) were analyzed in function of the origin and taxonomic group. Most isolates belonged to the species Aeromonas caviae and Aeromonas hydrophila (50% and 41%, respectively). The quinolone and the beta-lactamase resistance genes aac(6')-Ib-cr and blaOXA, including gene blaOXA-101, identified for the first time in Aeromonas spp., were detected in 58% and 56% of the isolates, respectively, with identical prevalence in HE and UWTP wastewater. In contrast, the gene qnrS2 was observed mainly in isolates from the UWTP (51%) and rarely in HE isolates (3%), suggesting that its origin is not the clinical setting. Bacterial groups and genes that allow the identification of major routes of antibiotic resistance dissemination are valuable tools to control this problem. In this study, it was concluded that members of the genus Aeromonas harboring the genes aac(6')-Ib-cr and blaOXA are relevant tracers of antibiotic resistance dissemination in wastewater habitats, while those yielding the gene qnrS2 allow the traceability from non-clinical sources.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Quinolonas / Aeromonas / Farmacorresistência Bacteriana / Águas Residuárias Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Quinolonas / Aeromonas / Farmacorresistência Bacteriana / Águas Residuárias Idioma: En Ano de publicação: 2016 Tipo de documento: Article