Your browser doesn't support javascript.
loading
Autophagy contributes to regulation of the hypoxia response during submergence in Arabidopsis thaliana.
Chen, Liang; Liao, Bin; Qi, Hua; Xie, Li-Juan; Huang, Li; Tan, Wei-Juan; Zhai, Ning; Yuan, Li-Bing; Zhou, Ying; Yu, Lu-Jun; Chen, Qin-Fang; Shu, Wensheng; Xiao, Shi.
Afiliação
  • Chen L; a State Key Laboratory of Biocontrol; Guangdong Provincial Key Laboratory of Plant Resources; Collaborative Innovation Center of Genetics and Development; School of Life Sciences; Sun Yat-sen University ; Guangzhou , China.
  • Liao B; a State Key Laboratory of Biocontrol; Guangdong Provincial Key Laboratory of Plant Resources; Collaborative Innovation Center of Genetics and Development; School of Life Sciences; Sun Yat-sen University ; Guangzhou , China.
  • Qi H; a State Key Laboratory of Biocontrol; Guangdong Provincial Key Laboratory of Plant Resources; Collaborative Innovation Center of Genetics and Development; School of Life Sciences; Sun Yat-sen University ; Guangzhou , China.
  • Xie LJ; a State Key Laboratory of Biocontrol; Guangdong Provincial Key Laboratory of Plant Resources; Collaborative Innovation Center of Genetics and Development; School of Life Sciences; Sun Yat-sen University ; Guangzhou , China.
  • Huang L; a State Key Laboratory of Biocontrol; Guangdong Provincial Key Laboratory of Plant Resources; Collaborative Innovation Center of Genetics and Development; School of Life Sciences; Sun Yat-sen University ; Guangzhou , China.
  • Tan WJ; a State Key Laboratory of Biocontrol; Guangdong Provincial Key Laboratory of Plant Resources; Collaborative Innovation Center of Genetics and Development; School of Life Sciences; Sun Yat-sen University ; Guangzhou , China.
  • Zhai N; a State Key Laboratory of Biocontrol; Guangdong Provincial Key Laboratory of Plant Resources; Collaborative Innovation Center of Genetics and Development; School of Life Sciences; Sun Yat-sen University ; Guangzhou , China.
  • Yuan LB; a State Key Laboratory of Biocontrol; Guangdong Provincial Key Laboratory of Plant Resources; Collaborative Innovation Center of Genetics and Development; School of Life Sciences; Sun Yat-sen University ; Guangzhou , China.
  • Zhou Y; a State Key Laboratory of Biocontrol; Guangdong Provincial Key Laboratory of Plant Resources; Collaborative Innovation Center of Genetics and Development; School of Life Sciences; Sun Yat-sen University ; Guangzhou , China.
  • Yu LJ; a State Key Laboratory of Biocontrol; Guangdong Provincial Key Laboratory of Plant Resources; Collaborative Innovation Center of Genetics and Development; School of Life Sciences; Sun Yat-sen University ; Guangzhou , China.
  • Chen QF; a State Key Laboratory of Biocontrol; Guangdong Provincial Key Laboratory of Plant Resources; Collaborative Innovation Center of Genetics and Development; School of Life Sciences; Sun Yat-sen University ; Guangzhou , China.
  • Shu W; a State Key Laboratory of Biocontrol; Guangdong Provincial Key Laboratory of Plant Resources; Collaborative Innovation Center of Genetics and Development; School of Life Sciences; Sun Yat-sen University ; Guangzhou , China.
  • Xiao S; a State Key Laboratory of Biocontrol; Guangdong Provincial Key Laboratory of Plant Resources; Collaborative Innovation Center of Genetics and Development; School of Life Sciences; Sun Yat-sen University ; Guangzhou , China.
Autophagy ; 11(12): 2233-46, 2015.
Article em En | MEDLINE | ID: mdl-26566261
ABSTRACT
Autophagy involves massive degradation of intracellular components and functions as a conserved system that helps cells to adapt to adverse conditions. In mammals, hypoxia rapidly stimulates autophagy as a cell survival response. Here, we examine the function of autophagy in the regulation of the plant response to submergence, an abiotic stress that leads to hypoxia and anaerobic respiration in plant cells. In Arabidopsis thaliana, submergence induces the transcription of autophagy-related (ATG) genes and the formation of autophagosomes. Consistent with this, the autophagy-defective (atg) mutants are hypersensitive to submergence stress and treatment with ethanol, the end product of anaerobic respiration. Upon submergence, the atg mutants have increased levels of transcripts of anaerobic respiration genes (alcohol dehydrogenase 1, ADH1 and pyruvate decarboxylase 1, PDC1), but reduced levels of transcripts of other hypoxia- and ethylene-responsive genes. Both submergence and ethanol treatments induce the accumulation of reactive oxygen species (ROS) in the rosettes of atg mutants more than in the wild type. Moreover, the production of ROS by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases is necessary for plant tolerance to submergence and ethanol, submergence-induced expression of ADH1 and PDC1, and activation of autophagy. The submergence- and ethanol-sensitive phenotypes in the atg mutants depend on a complete salicylic acid (SA) signaling pathway. Together, our findings demonstrate that submergence-induced autophagy functions in the hypoxia response in Arabidopsis by modulating SA-mediated cellular homeostasis.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Autofagia / Espécies Reativas de Oxigênio / Arabidopsis / Regulação da Expressão Gênica de Plantas Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Autofagia / Espécies Reativas de Oxigênio / Arabidopsis / Regulação da Expressão Gênica de Plantas Idioma: En Ano de publicação: 2015 Tipo de documento: Article