Your browser doesn't support javascript.
loading
Identification and Successful Negotiation of a Metabolic Checkpoint in Direct Neuronal Reprogramming.
Gascón, Sergio; Murenu, Elisa; Masserdotti, Giacomo; Ortega, Felipe; Russo, Gianluca L; Petrik, David; Deshpande, Aditi; Heinrich, Christophe; Karow, Marisa; Robertson, Stephen P; Schroeder, Timm; Beckers, Johannes; Irmler, Martin; Berndt, Carsten; Angeli, José P Friedmann; Conrad, Marcus; Berninger, Benedikt; Götz, Magdalena.
Afiliação
  • Gascón S; Physiological Genomics, Biomedical Center Ludwig-Maximilians-University Munich, 80336 Munich, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, Germany. Electronic address: sergio.gascon@med.uni-muenchen.de.
  • Murenu E; Physiological Genomics, Biomedical Center Ludwig-Maximilians-University Munich, 80336 Munich, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, Germany.
  • Masserdotti G; Physiological Genomics, Biomedical Center Ludwig-Maximilians-University Munich, 80336 Munich, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, Germany.
  • Ortega F; Physiological Genomics, Biomedical Center Ludwig-Maximilians-University Munich, 80336 Munich, Germany; Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany; Biochemistry and Molecular Biology Department, Faculty of Veterinar
  • Russo GL; Physiological Genomics, Biomedical Center Ludwig-Maximilians-University Munich, 80336 Munich, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, Germany.
  • Petrik D; Physiological Genomics, Biomedical Center Ludwig-Maximilians-University Munich, 80336 Munich, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, Germany.
  • Deshpande A; Physiological Genomics, Biomedical Center Ludwig-Maximilians-University Munich, 80336 Munich, Germany.
  • Heinrich C; Physiological Genomics, Biomedical Center Ludwig-Maximilians-University Munich, 80336 Munich, Germany.
  • Karow M; Physiological Genomics, Biomedical Center Ludwig-Maximilians-University Munich, 80336 Munich, Germany.
  • Robertson SP; Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, 9016 Dunedin, New Zealand.
  • Schroeder T; Research Unit Stem Cell Dynamics, Helmholtz Center Munich, Neuherberg, 85764 Neuherberg, Germany.
  • Beckers J; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Institute of Experimental Genetics, Helmholtz Center Munich GmbH, 85764 Neuherberg, Germany; Center of Life and Food Sciences Weihenstephan, Technical University Munich, 85354 Freising, Germany.
  • Irmler M; Institute of Experimental Genetics, Helmholtz Center Munich GmbH, 85764 Neuherberg, Germany.
  • Berndt C; Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Merowingerplatz 1a, 40225 Düsseldorf, Germany.
  • Angeli JP; Institute of Developmental Genetics, Helmholtz Center Munich, 85764 Neuherberg, Germany.
  • Conrad M; Institute of Developmental Genetics, Helmholtz Center Munich, 85764 Neuherberg, Germany.
  • Berninger B; Physiological Genomics, Biomedical Center Ludwig-Maximilians-University Munich, 80336 Munich, Germany; Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany; Focus Program Translational Neuroscience, Johannes Gutenberg Univer
  • Götz M; Physiological Genomics, Biomedical Center Ludwig-Maximilians-University Munich, 80336 Munich, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, Germany; Excellence Cluster of Systems Neurology (SYNERGY), 80336 Munich, Germany. Electronic address: magdalena.goetz@h
Cell Stem Cell ; 18(3): 396-409, 2016 Mar 03.
Article em En | MEDLINE | ID: mdl-26748418
ABSTRACT
Despite the widespread interest in direct neuronal reprogramming, the mechanisms underpinning fate conversion remain largely unknown. Our study revealed a critical time point after which cells either successfully convert into neurons or succumb to cell death. Co-transduction with Bcl-2 greatly improved negotiation of this critical point by faster neuronal differentiation. Surprisingly, mutants with reduced or no affinity for Bax demonstrated that Bcl-2 exerts this effect by an apoptosis-independent mechanism. Consistent with a caspase-independent role, ferroptosis inhibitors potently increased neuronal reprogramming by inhibiting lipid peroxidation occurring during fate conversion. Genome-wide expression analysis confirmed that treatments promoting neuronal reprogramming elicit an anti-oxidative stress response. Importantly, co-expression of Bcl-2 and anti-oxidative treatments leads to an unprecedented improvement in glial-to-neuron conversion after traumatic brain injury in vivo, underscoring the relevance of these pathways in cellular reprograming irrespective of cell type in vitro and in vivo.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Transdução Genética / Neuroglia / Proteínas Proto-Oncogênicas c-bcl-2 / Reprogramação Celular / Técnicas de Reprogramação Celular / Neurônios Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Transdução Genética / Neuroglia / Proteínas Proto-Oncogênicas c-bcl-2 / Reprogramação Celular / Técnicas de Reprogramação Celular / Neurônios Idioma: En Ano de publicação: 2016 Tipo de documento: Article