Your browser doesn't support javascript.
loading
Anodic Methods for Covalent Attachment of Ethynylferrocenes to Electrode Surfaces: Comparison of Ethynyl Activation Processes.
Sheridan, Matthew V; Lam, Kevin; Sharafi, Mona; Schneebeli, Severin T; Geiger, William E.
Afiliação
  • Sheridan MV; Department of Chemistry, University of Vermont , Burlington, Vermont 05405, United States.
  • Lam K; Department of Chemistry, University of Vermont , Burlington, Vermont 05405, United States.
  • Sharafi M; Department of Chemistry, University of Vermont , Burlington, Vermont 05405, United States.
  • Schneebeli ST; Department of Chemistry, University of Vermont , Burlington, Vermont 05405, United States.
  • Geiger WE; Department of Chemistry, University of Vermont , Burlington, Vermont 05405, United States.
Langmuir ; 32(6): 1645-57, 2016 Feb 16.
Article em En | MEDLINE | ID: mdl-26756403
The electrochemical oxidation of ferrocenes having an H- or Li-terminated ethynyl group has been studied, especially as it relates to their covalent anchoring to carbon surfaces. The anodic oxidation of lithioethynylferrocene (1-Li) results in rapid loss of Li(+) and formation of the ethynyl-based radical FeCp(η(5)-C5H4)(C≡C), (1, Cp = η(5)-C5H5), which reacts with the electrode. Chemically modified electrodes (CMEs) were thereby produced containing strongly bonded, ethynyl-linked monolayers and electrochemically controlled multilayers. Strong attachments of ethynylferrocenes to gold and platinum surfaces were also possible. The lithiation/anodic oxidation process is a mirror analogue of the diazonium/cathodic reduction process for preparation of aryl-modified CMEs. A second method produced an ethynylferrocene-modified electrode by direct anodic oxidation of the H-terminated ethynylferrocene (1-H) at a considerably more positive potential. Both processes produced robust modified electrodes with well-defined ferrocene-based surface cyclic voltammetry waves that remained unchanged for as many as 10(4) scans. Ferrocene derivatives in which the ethynyl moiety was separated from the cyclopentadienyl ring by an ether group showed very similar behavior. DFT calculations were performed on the relevant redox states of 1-H, 1-Li, and 1, with emphasis on the ferrocenyl vs ethynyl character of their high valence orbitals. Whereas the HOMOs of both 1-H and 1-Li have some ethynyl character, the SOMOs of the corresponding monocations are strictly ferrocenium in makeup. Predominant ethynyl character returns to the highest valence orbitals after loss of Li(+) from [1-Li](+) or loss of H(+) from [1-H](2+). These anodic processes hold promise for the controlled chemical modification of carbon and other electrode surfaces by a variety of ethynyl or alkynyl-linked organic and metal-containing systems.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article