Your browser doesn't support javascript.
loading
Plant Homeo Domain Finger Protein 8 Regulates Mesodermal and Cardiac Differentiation of Embryonic Stem Cells Through Mediating the Histone Demethylation of pmaip1.
Tang, Yan; Hong, Ya-Zhen; Bai, Hua-Jun; Wu, Qiang; Chen, Charlie Degui; Lang, Jing-Yu; Boheler, Kenneth R; Yang, Huang-Tian.
Afiliação
  • Tang Y; Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) University of Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Hong YZ; Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) University of Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Bai HJ; Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) University of Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Wu Q; Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) University of Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Chen CD; State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China.
  • Lang JY; Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) University of Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Boheler KR; LKS Faculty of Medicine, Department of Physiology and Stem Cell and Regenerative Medicine Consortium, School of Biomedical Sciences, Jockey Club Building for Interdisciplinary Research, University of Hong Kong, Hong Kong, SAR China.
  • Yang HT; Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) University of Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Stem Cells ; 34(6): 1527-40, 2016 06.
Article em En | MEDLINE | ID: mdl-26866517
ABSTRACT
Histone demethylases have emerged as key regulators of biological processes. The H3K9me2 demethylase plant homeo domain finger protein 8(PHF8), for example, is involved in neuronal differentiation, but its potential function in the differentiation of embryonic stem cells (ESCs) to cardiomyocytes is poorly understood. Here, we explored the role of PHF8 during mesodermal and cardiac lineage commitment of mouse ESCs (mESCs). Using a phf8 knockout (ph8(-/Y) ) model, we found that deletion of phf8 in ESCs did not affect self-renewal, proliferation or early ectodermal/endodermal differentiation, but it did promote the mesodermal lineage commitment with the enhanced cardiomyocyte differentiation. The effects were accompanied by a reduction in apoptosis through a caspase 3-independent pathway during early ESC differentiation, without significant differences between differentiating wide-type (ph8(+/Y) ) and ph8(-/Y) ESCs in cell cycle progression or proliferation. Functionally, PHF8 promoted the loss of a repressive mark H3K9me2 from the transcription start site of a proapoptotic gene pmaip1 and activated its transcription. Furthermore, knockdown of pmaip1 mimicked the phenotype of ph8(-/Y) by showing the decreased apoptosis during early differentiation of ESCs and promoted mesodermal and cardiac commitment, while overexpression of pmaip1 or phf8 rescued the phenotype of ph8(-/Y) ESCs by increasing the apoptosis and weakening the mesodermal and cardiac differentiation. These results reveal that the histone demethylase PHF8 regulates mesodermal lineage and cell fate decisions in differentiating mESCs through epigenetic control of the gene critical to programmed cell death pathways. Stem Cells 2016;341527-1540.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Histonas / Diferenciação Celular / Proteínas Proto-Oncogênicas c-bcl-2 / Miócitos Cardíacos / Histona Desmetilases / Células-Tronco Embrionárias Murinas / Desmetilação Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Histonas / Diferenciação Celular / Proteínas Proto-Oncogênicas c-bcl-2 / Miócitos Cardíacos / Histona Desmetilases / Células-Tronco Embrionárias Murinas / Desmetilação Idioma: En Ano de publicação: 2016 Tipo de documento: Article