A Layered Approach for Robust Spatial Virtual Human Pose Reconstruction Using a Still Image.
Sensors (Basel)
; 16(2): 263, 2016 Feb 20.
Article
em En
| MEDLINE
| ID: mdl-26907289
Pedestrian detection and human pose estimation are instructive for reconstructing a three-dimensional scenario and for robot navigation, particularly when large amounts of vision data are captured using various data-recording techniques. Using an unrestricted capture scheme, which produces occlusions or breezing, the information describing each part of a human body and the relationship between each part or even different pedestrians must be present in a still image. Using this framework, a multi-layered, spatial, virtual, human pose reconstruction framework is presented in this study to recover any deficient information in planar images. In this framework, a hierarchical parts-based deep model is used to detect body parts by using the available restricted information in a still image and is then combined with spatial Markov random fields to re-estimate the accurate joint positions in the deep network. Then, the planar estimation results are mapped onto a virtual three-dimensional space using multiple constraints to recover any deficient spatial information. The proposed approach can be viewed as a general pre-processing method to guide the generation of continuous, three-dimensional motion data. The experiment results of this study are used to describe the effectiveness and usability of the proposed approach.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Postura
/
Algoritmos
Idioma:
En
Ano de publicação:
2016
Tipo de documento:
Article