Your browser doesn't support javascript.
loading
The influence of acute unloading on left ventricular strain and strain rate by speckle tracking echocardiography in a porcine model.
Dahle, Geir Olav; Stangeland, Lodve; Moen, Christian Arvei; Salminen, Pirjo-Riitta; Haaverstad, Rune; Matre, Knut; Grong, Ketil.
Afiliação
  • Dahle GO; Section of Cardiothoracic Surgery, Department of Heart Disease, Haukeland University Hospital, Bergen, Norway; and Department of Clinical Science, University of Bergen, Bergen, Norway geir.olav.dahle@helse-bergen.no.
  • Stangeland L; Department of Clinical Science, University of Bergen, Bergen, Norway.
  • Moen CA; Department of Clinical Science, University of Bergen, Bergen, Norway.
  • Salminen PR; Section of Cardiothoracic Surgery, Department of Heart Disease, Haukeland University Hospital, Bergen, Norway; and Department of Clinical Science, University of Bergen, Bergen, Norway.
  • Haaverstad R; Section of Cardiothoracic Surgery, Department of Heart Disease, Haukeland University Hospital, Bergen, Norway; and Department of Clinical Science, University of Bergen, Bergen, Norway.
  • Matre K; Department of Clinical Science, University of Bergen, Bergen, Norway.
  • Grong K; Department of Clinical Science, University of Bergen, Bergen, Norway.
Am J Physiol Heart Circ Physiol ; 310(10): H1330-9, 2016 05 15.
Article em En | MEDLINE | ID: mdl-26968547
ABSTRACT
Noninvasive measurements of myocardial strain and strain rate by speckle tracking echocardiography correlate to cardiac contractile state but also to load, which may weaken their value as indices of inotropy. In a porcine model, we investigated the influence of acute dynamic preload reductions on left ventricular strain and strain rate and their relation to the pressure-conductance catheter-derived preload recruitable stroke work (PRSW) and peak positive first derivative of left ventricular pressure (LV-dP/dtmax). Speckle tracking strain and strain rate in the longitudinal, circumferential, and radial directions were measured during acute dynamic reductions of end-diastolic volume during three different myocardial inotropic states. Both strain and strain rate were sensitive to unloading of the left ventricle (P < 0.001), but the load dependency for strain rate was modest compared with strain. Changes in longitudinal and circumferential strain correlated more strongly to changes in end-diastolic volume (r = -0.86 and r = -0.72) than did radial strain (r = 0.35). Longitudinal, circumferential, and radial strain significantly correlated with LV-dP/dtmax (r = -0.53, r = -0.46, and r = 0.86), whereas only radial strain correlated with PRSW (r = 0.55). Strain rate in the longitudinal, circumferential and radial direction significantly correlated with both PRSW (r = -0.64, r = -0.58, and r = 0.74) and LV-dP/dtmax (r = -0.95, r = -0.70, and r = 0.85). In conclusion, the speckle tracking echocardiography-derived strain rate is more robust to dynamic ventricular unloading than strain. Longitudinal and circumferential strain could not predict load-independent contractility. Strain rates, and especially in the radial direction, are good predictors of preload-independent inotropic markers derived from conductance catheter.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Função Ventricular Esquerda / Pressão Ventricular / Ecocardiografia sob Estresse / Ventrículos do Coração / Contração Miocárdica Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Função Ventricular Esquerda / Pressão Ventricular / Ecocardiografia sob Estresse / Ventrículos do Coração / Contração Miocárdica Idioma: En Ano de publicação: 2016 Tipo de documento: Article