Your browser doesn't support javascript.
loading
The voltage gated Ca(2+)-channel Cav3.2 and therapeutic responses in breast cancer.
Pera, Elena; Kaemmerer, Elke; Milevskiy, Michael J G; Yapa, Kunsala T D S; O'Donnell, Jake S; Brown, Melissa A; Simpson, Fiona; Peters, Amelia A; Roberts-Thomson, Sarah J; Monteith, Gregory R.
Afiliação
  • Pera E; The School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall St, Woolloongabba, Brisbane, QLD Australia.
  • Kaemmerer E; The School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall St, Woolloongabba, Brisbane, QLD Australia.
  • Milevskiy MJG; Mater Research Institute, The University of Queensland, Brisbane, QLD Australia.
  • Yapa KTDS; Translational Research Institute, Brisbane, QLD Australia.
  • O'Donnell JS; The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia.
  • Brown MA; The School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall St, Woolloongabba, Brisbane, QLD Australia.
  • Simpson F; Translational Research Institute, Brisbane, QLD Australia.
  • Peters AA; Diamantina Institute, The University of Queensland, Brisbane, QLD Australia.
  • Roberts-Thomson SJ; The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia.
  • Monteith GR; Translational Research Institute, Brisbane, QLD Australia.
Cancer Cell Int ; 16: 24, 2016.
Article em En | MEDLINE | ID: mdl-27034617
BACKGROUND: Understanding the cause of therapeutic resistance and identifying new biomarkers in breast cancer to predict therapeutic responses will help optimise patient care. Calcium (Ca(2+))-signalling is important in a variety of processes associated with tumour progression, including breast cancer cell migration and proliferation. Ca(2+)-signalling is also linked to the acquisition of multidrug resistance. This study aimed to assess the expression level of proteins involved in Ca(2+)-signalling in an in vitro model of trastuzumab-resistance and to assess the ability of identified targets to reverse resistance and/or act as potential biomarkers for prognosis or therapy outcome. METHODS: Expression levels of a panel of Ca(2+)-pumps, channels and channel regulators were assessed using RT-qPCR in resistant and sensitive age-matched SKBR3 breast cancer cells, established through continuous culture in the absence or presence of trastuzumab. The role of Cav3.2 in the acquisition of trastuzumab-resistance was assessed through pharmacological inhibition and induced overexpression. Levels of Cav3.2 were assessed in a panel of non-malignant and malignant breast cell lines using RT-qPCR and in patient samples representing different molecular subtypes (PAM50 cohort). Patient survival was also assessed in samples stratified by Cav3.2 expression (METABRIC and KM-Plotter cohort). RESULTS: Increased mRNA of Cav3.2 was a feature of both acquired and intrinsic trastuzumab-resistant SKBR3 cells. However, pharmacological inhibition of Cav3.2 did not restore trastuzumab-sensitivity nor did Cav3.2 overexpression induce the expression of markers associated with resistance, suggesting that Cav3.2 is not a driver of trastuzumab-resistance. Cav3.2 levels were significantly higher in luminal A, luminal B and HER2-enriched subtypes compared to the basal subtype. High levels of Cav3.2 were associated with poor outcome in patients with oestrogen receptor positive (ER+) breast cancers, whereas Cav3.2 levels were correlated positively with patient survival after chemotherapy in patients with HER2-positive breast cancers. CONCLUSION: Our study identified elevated levels of Cav3.2 in trastuzumab-resistant SKBR3 cell lines. Although not a regulator of trastuzumab-resistance in HER2-positive breast cancer cells, Cav3.2 may be a potential differential biomarker for survival and treatment response in specific breast cancer subtypes. These studies add to the complex and diverse role of Ca(2+)-signalling in breast cancer progression and treatment.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article