Ancient human sialic acid variant restricts an emerging zoonotic malaria parasite.
Nat Commun
; 7: 11187, 2016 Apr 04.
Article
em En
| MEDLINE
| ID: mdl-27041489
Plasmodium knowlesi is a zoonotic parasite transmitted from macaques causing malaria in humans in Southeast Asia. Plasmodium parasites bind to red blood cell (RBC) surface receptors, many of which are sialylated. While macaques synthesize the sialic acid variant N-glycolylneuraminic acid (Neu5Gc), humans cannot because of a mutation in the enzyme CMAH that converts N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. Here we reconstitute CMAH in human RBCs for the reintroduction of Neu5Gc, which results in enhancement of P. knowlesi invasion. We show that two P. knowlesi invasion ligands, PkDBPß and PkDBPγ, bind specifically to Neu5Gc-containing receptors. A human-adapted P. knowlesi line invades human RBCs independently of Neu5Gc, with duplication of the sialic acid-independent invasion ligand, PkDBPα and loss of PkDBPγ. Our results suggest that absence of Neu5Gc on human RBCs limits P. knowlesi invasion, but that parasites may evolve to invade human RBCs through the use of sialic acid-independent pathways.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Zoonoses
/
Plasmodium knowlesi
/
Ácido N-Acetilneuramínico
/
Malária
Idioma:
En
Ano de publicação:
2016
Tipo de documento:
Article