Your browser doesn't support javascript.
loading
Structural Insights into Reelin Function: Present and Future.
Ranaivoson, Fanomezana M; von Daake, Sventja; Comoletti, Davide.
Afiliação
  • Ranaivoson FM; Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers UniversityNew Brunswick, NJ, USA; Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers UniversityNew Brunswick, NJ, USA.
  • von Daake S; Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers UniversityNew Brunswick, NJ, USA; Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers UniversityNew Brunswick, NJ, USA.
  • Comoletti D; Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers UniversityNew Brunswick, NJ, USA; Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers UniversityNew Brunswick, NJ, USA; Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers UniversityNew Brunswick, NJ, USA.
Front Cell Neurosci ; 10: 137, 2016.
Article em En | MEDLINE | ID: mdl-27303268
ABSTRACT
Reelin is a neuronal glycoprotein secreted by the Cajal-Retzius cells in marginal regions of the cerebral cortex and the hippocampus where it plays important roles in the control of neuronal migration and the formation of cellular layers during brain development. This 3461 residue-long protein is composed of a signal peptide, an F-spondin-like domain, eight Reelin repeats (RR1-8), and a positively charged sequence at the C-terminus. Biochemical data indicate that the central region of Reelin binds to the low-density lipoprotein receptors apolipoprotein E receptor 2 (ApoER2) and the very-low-density lipoprotein receptor (VLDLR), leading to the phosphorylation of the intracellular adaptor protein Dab1. After secretion, Reelin is rapidly degraded in three major fragments, but the functional significance of this degradation is poorly understood. Probably due to its large mass and the complexity of its architecture, the high-resolution, three-dimensional structure of Reelin has never been determined. However, the crystal structures of some of the RRs have been solved, providing important insights into their fold and the interaction with the ApoER2 receptor. This review discusses the current findings on the structure of Reelin and its binding to the ApoER2 and VLDLR receptors, and we discuss some areas where proteomics and structural biology can help understanding Reelin function in brain development and human health.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article