Preventing Illegitimate Extrasynaptic Acetylcholine Receptor Clustering Requires the RSU-1 Protein.
J Neurosci
; 36(24): 6525-37, 2016 06 15.
Article
em En
| MEDLINE
| ID: mdl-27307240
UNLABELLED: Diffuse extrasynaptic neurotransmitter receptors constitute an abundant pool of receptors that can be recruited to modulate synaptic strength. Whether the diffuse distribution of receptors in extrasynaptic membranes is a default state or is actively controlled remains essentially unknown. Here we show that RSU-1 (Ras Suppressor-1) is required for the proper distribution of extrasynaptic acetylcholine receptors (AChRs) in Caenorhabditis elegans muscle cells. RSU-1 is an evolutionary conserved cytoplasmic protein that contains multiple leucine-rich repeats (LRRs) and interacts with integrin-dependent adhesion complexes. In rsu-1 mutants, neuromuscular junctions differentiate as in the wild type, but AChRs assemble into ectopic clusters that progressively enlarge during development. As a consequence, the synaptic content of AChRs is reduced. Our study provides the first evidence that an RSU-1-dependent active mechanism maintains extrasynaptic receptors dispersed and indirectly regulates synapse maturation. SIGNIFICANCE STATEMENT: Using Caenorhabditis elegans neuromuscular junction as a model synapse, we uncovered a novel mechanism that regulates the distribution of acetylcholine receptors (AChRs). In an unbiased visual screen for mutants with abnormal AChR distribution, we isolated the ras suppressor 1 (rsu-1) mutant based on the presence of large extrasynaptic clusters. We show that disrupting rsu-1 causes spontaneous clustering of extrasynaptic receptors that are normally dispersed, independently of synaptic cues. These clusters outcompete synaptic domains and cause a decrease of synaptic receptor content. These results indicate that the diffuse state of extrasynaptic receptors is not a default state that is simply explained by the lack of synaptic cues but necessitates additional proteins to prevent spontaneous clustering, a concept that is relevant for developmental and pathological situations.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Fatores de Transcrição
/
Receptores Colinérgicos
/
Proteínas de Caenorhabditis elegans
/
Mutação
/
Junção Neuromuscular
Idioma:
En
Ano de publicação:
2016
Tipo de documento:
Article