Your browser doesn't support javascript.

Biblioteca Virtual em Saúde

BVS - Literatura Científico-Técnica

Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:


Adicionar mais destinatários
| |

Life Cycle Greenhouse Gas Emissions from Uranium Mining and Milling in Canada.

Parker, David J; McNaughton, Cameron S; Sparks, Gordon A.
Environ Sci Technol; 50(17): 9746-53, 2016 09 06.
Inglês | MEDLINE | ID: mdl-27471915
Life cycle greenhouse gas (GHG) emissions from the production of nuclear power (in g CO2e/kWh) are uncertain due partly to a paucity of data on emissions from individual phases of the nuclear fuel cycle. Here, we present the first comprehensive life cycle assessment of GHG emissions produced from the mining and milling of uranium in Canada. The study includes data from 2006-2013 for two uranium mine-mill operations in northern Saskatchewan (SK) and data from 1995-2010 for a third SK mine-mill operation. The mine-mill operations were determined to have GHG emissions intensities of 81, 64, and 34 kg CO2e/kg U3O8 at average ore grades of 0.74%, 1.54%, and 4.53% U3O8, respectively. The production-weighted average GHG emission intensity is 42 kg CO2e/kg U3O8 at an average ore grade of 3.81% U3O8. The production-weighted average GHG emission intensity drops to 24 kg CO2e/kg U3O8 when the local hydroelectric GHG emission factor (7.2 g CO2e/kWh) is substituted for the SK grid-average electricity GHG emission factor (768 g CO2e/kWh). This results in Canadian uranium mining-milling contributing only 1.1 g CO2e/kWh to total life cycle GHG emissions from the nuclear fuel cycle (0.7 g CO2e/kWh using the local hydroelectric emission factor).