Your browser doesn't support javascript.
loading
Mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone induces vasorelaxation without involving KATP channel activation in smooth muscle cells of arteries.
Zhang, Yan-Qiu; Shen, Xin; Xiao, Xiao-Lin; Liu, Ming-Yu; Li, Shan-Liang; Yan, Jie; Jin, Jing; Gao, Jin-Lai; Zhen, Chang-Lin; Hu, Nan; Zhang, Xin-Zi; Tai, Yu; Zhang, Liang-Shuan; Bai, Yun-Long; Dong, De-Li.
Afiliação
  • Zhang YQ; Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sci
  • Shen X; Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sci
  • Xiao XL; Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sci
  • Liu MY; Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sci
  • Li SL; Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sci
  • Yan J; Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sci
  • Jin J; Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sci
  • Gao JL; Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sci
  • Zhen CL; Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sci
  • Hu N; Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sci
  • Zhang XZ; Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sci
  • Tai Y; Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sci
  • Zhang LS; Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sci
  • Bai YL; Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sci
  • Dong DL; Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sci
Br J Pharmacol ; 173(21): 3145-3158, 2016 11.
Article em En | MEDLINE | ID: mdl-27534899
ABSTRACT
BACKGROUND AND

PURPOSE:

The effects and mechanisms of chemical mitochondrial uncouplers on vascular function have never been identified. Here, we characterized the effects of the typical mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) on vascular function in rat mesenteric arteries and aorta and elucidated the potential mechanisms. EXPERIMENTAL

APPROACH:

Isometric tension of mesenteric artery and thoracic aorta was recorded by using a multiwire myograph system. Protein levels were measured by western blot analyses. Cytosolic [Ca2+ ]i , mitochondrial ROS (mitoROS) and mitochondrial membrane potential of smooth muscle cells (A10) were measured by laser scanning confocal microscopy. KEY

RESULTS:

Acute treatment with CCCP relaxed phenylephrine (PE)- and high K+ (KPSS)-induced constriction of rat mesenteric arteries with intact and denuded endothelium. Pretreatment with CCCP prevented PE- and KPSS-induced constriction of rat mesenteric arteries with intact and denuded endothelium. Similarly, CCCP prevented PE- and KPSS-induced constriction of rat thoracic aorta. CCCP increased the cellular ADP/ATP ratio in vascular smooth muscle cells (A10) and activated AMPK in A10 cells and rat thoracic aorta tissues. CCCP-induced aorta relaxation was attenuated in AMPK α1 knockout (-/-) mice. SERCA inhibitors thapsigargin and cyclopiazonic acid (CPA) but not the KATP channel blocker glibenclamide partially inhibited CCCP-induced vasorelaxation in endothelium-denuded rat mesenteric arteries. CCCP increased cytosolic [Ca2+ ]i , mitoROS production and depolarized mitochondrial membrane potential in A10 cells. FCCP, the analogue of CCCP, had similar vasoactivity as CCCP in rat mesenteric arteries. CONCLUSIONS AND IMPLICATIONS CCCP induces vasorelaxation by a mechanism that does not involve KATP channel activation in smooth muscle cells of arteries.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Artérias / Desacopladores / Vasodilatação / Carbonil Cianeto m-Clorofenil Hidrazona / Miócitos de Músculo Liso / Mitocôndrias Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Artérias / Desacopladores / Vasodilatação / Carbonil Cianeto m-Clorofenil Hidrazona / Miócitos de Músculo Liso / Mitocôndrias Idioma: En Ano de publicação: 2016 Tipo de documento: Article