Your browser doesn't support javascript.
loading
Autonomous translational pausing is required for XBP1u mRNA recruitment to the ER via the SRP pathway.
Kanda, Satoshi; Yanagitani, Kota; Yokota, Yukiko; Esaki, Yuta; Kohno, Kenji.
Afiliação
  • Kanda S; Laboratory of Molecular and Cell Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan.
  • Yanagitani K; Laboratory of Molecular and Cell Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan; Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, United Kingdom kkouno@bs.naist.jp yanagi.pausing@gmail.com.
  • Yokota Y; Laboratory of Molecular and Cell Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan.
  • Esaki Y; Laboratory of Molecular and Cell Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan.
  • Kohno K; Laboratory of Molecular and Cell Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan; kkouno@bs.naist.jp yanagi.pausing@gmail.com.
Proc Natl Acad Sci U S A ; 113(40): E5886-E5895, 2016 10 04.
Article em En | MEDLINE | ID: mdl-27651490
ABSTRACT
Unconventional mRNA splicing on the endoplasmic reticulum (ER) membrane is the sole conserved mechanism in eukaryotes to transmit information regarding misfolded protein accumulation to the nucleus to activate the stress response. In metazoans, the unspliced form of X-box-binding protein 1 (XBP1u) mRNA is recruited to membranes as a ribosome nascent chain (RNC) complex for efficient splicing. We previously reported that both hydrophobic (HR2) and translational pausing regions of XBP1u are important for the recruitment of its own mRNA to membranes. However, its precise location and the molecular mechanism of translocation are unclear. We show that XBP1u-RNC is specifically recruited to the ER membrane in an HR2- and translational pausing-dependent manner by immunostaining, fluorescent recovery after photobleaching, and biochemical analyses. Notably, translational pausing during XBP1u synthesis is indispensable for the recognition of HR2 by the signal recognition particle (SRP), resulting in efficient ER-specific targeting of the complex, similar to secretory protein targeting to the ER. On the ER, the XBP1u nascent chain is transferred from the SRP to the translocon; however, it cannot pass through the translocon or insert into the membrane. Therefore, our results support a noncanonical mechanism by which mRNA substrates are recruited to the ER for unconventional splicing.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Biossíntese de Proteínas / Transdução de Sinais / Partícula de Reconhecimento de Sinal / Retículo Endoplasmático / Proteína 1 de Ligação a X-Box Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Biossíntese de Proteínas / Transdução de Sinais / Partícula de Reconhecimento de Sinal / Retículo Endoplasmático / Proteína 1 de Ligação a X-Box Idioma: En Ano de publicação: 2016 Tipo de documento: Article