Your browser doesn't support javascript.
loading
Self-Referenced Coherent Diffraction X-Ray Movie of Ångstrom- and Femtosecond-Scale Atomic Motion.
Glownia, J M; Natan, A; Cryan, J P; Hartsock, R; Kozina, M; Minitti, M P; Nelson, S; Robinson, J; Sato, T; van Driel, T; Welch, G; Weninger, C; Zhu, D; Bucksbaum, P H.
Afiliação
  • Glownia JM; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
  • Natan A; Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
  • Cryan JP; Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
  • Hartsock R; Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
  • Kozina M; Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
  • Minitti MP; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
  • Nelson S; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
  • Robinson J; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
  • Sato T; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
  • van Driel T; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
  • Welch G; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
  • Weninger C; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
  • Zhu D; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
  • Bucksbaum PH; Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
Phys Rev Lett ; 117(15): 153003, 2016 Oct 07.
Article em En | MEDLINE | ID: mdl-27768351
ABSTRACT
Time-resolved femtosecond x-ray diffraction patterns from laser-excited molecular iodine are used to create a movie of intramolecular motion with a temporal and spatial resolution of 30 fs and 0.3 Å. This high fidelity is due to interference between the nonstationary excitation and the stationary initial charge distribution. The initial state is used as the local oscillator for heterodyne amplification of the excited charge distribution to retrieve real-space movies of atomic motion on ångstrom and femtosecond scales. This x-ray interference has not been employed to image internal motion in molecules before. Coherent vibrational motion and dispersion, dissociation, and rotational dephasing are all clearly visible in the data, thereby demonstrating the stunning sensitivity of heterodyne methods.
Buscar no Google
Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article