Your browser doesn't support javascript.
loading
Reducing uncertainties in decadal variability of the global carbon budget with multiple datasets.
Li, Wei; Ciais, Philippe; Wang, Yilong; Peng, Shushi; Broquet, Grégoire; Ballantyne, Ashley P; Canadell, Josep G; Cooper, Leila; Friedlingstein, Pierre; Le Quéré, Corinne; Myneni, Ranga B; Peters, Glen P; Piao, Shilong; Pongratz, Julia.
Afiliação
  • Li W; Laboratoire des Sciences du Climat et de l'Environnement/Institut Pierre Simon Laplace, Commissariat à l'Énergie Atomique et aux Énergies Alternatives-CNRS-Université de Versailles Saint-Quentin, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France; wei.li@lsce.ipsl.fr.
  • Ciais P; Laboratoire des Sciences du Climat et de l'Environnement/Institut Pierre Simon Laplace, Commissariat à l'Énergie Atomique et aux Énergies Alternatives-CNRS-Université de Versailles Saint-Quentin, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.
  • Wang Y; Laboratoire des Sciences du Climat et de l'Environnement/Institut Pierre Simon Laplace, Commissariat à l'Énergie Atomique et aux Énergies Alternatives-CNRS-Université de Versailles Saint-Quentin, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.
  • Peng S; Laboratoire des Sciences du Climat et de l'Environnement/Institut Pierre Simon Laplace, Commissariat à l'Énergie Atomique et aux Énergies Alternatives-CNRS-Université de Versailles Saint-Quentin, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.
  • Broquet G; Laboratoire des Sciences du Climat et de l'Environnement/Institut Pierre Simon Laplace, Commissariat à l'Énergie Atomique et aux Énergies Alternatives-CNRS-Université de Versailles Saint-Quentin, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.
  • Ballantyne AP; Department of Ecosystem and Conservation Science, University of Montana, Missoula, MT 59812.
  • Canadell JG; Global Carbon Project, Commonwealth Scientific and Industrial Research Organization Oceans and Atmosphere, Canberra, ACT 2601, Australia.
  • Cooper L; Department of Ecosystem and Conservation Science, University of Montana, Missoula, MT 59812.
  • Friedlingstein P; College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom.
  • Le Quéré C; Tyndall Centre for Climate Change Research, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom.
  • Myneni RB; Department of Earth and Environment, Boston University, Boston, MA 02215.
  • Peters GP; Center for International Climate and Environmental Research-Oslo, 0349 Oslo, Norway.
  • Piao S; Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
  • Pongratz J; Max Planck Institute for Meteorology, 20146 Hamburg, Germany.
Proc Natl Acad Sci U S A ; 113(46): 13104-13108, 2016 11 15.
Article em En | MEDLINE | ID: mdl-27799533
Conventional calculations of the global carbon budget infer the land sink as a residual between emissions, atmospheric accumulation, and the ocean sink. Thus, the land sink accumulates the errors from the other flux terms and bears the largest uncertainty. Here, we present a Bayesian fusion approach that combines multiple observations in different carbon reservoirs to optimize the land (B) and ocean (O) carbon sinks, land use change emissions (L), and indirectly fossil fuel emissions (F) from 1980 to 2014. Compared with the conventional approach, Bayesian optimization decreases the uncertainties in B by 41% and in O by 46%. The L uncertainty decreases by 47%, whereas F uncertainty is marginally improved through the knowledge of natural fluxes. Both ocean and net land uptake (B + L) rates have positive trends of 29 ± 8 and 37 ± 17 Tg C⋅y-2 since 1980, respectively. Our Bayesian fusion of multiple observations reduces uncertainties, thereby allowing us to isolate important variability in global carbon cycle processes.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article