Your browser doesn't support javascript.
loading
Cellular and neurochemical basis of sleep stages in the thalamocortical network.
Krishnan, Giri P; Chauvette, Sylvain; Shamie, Isaac; Soltani, Sara; Timofeev, Igor; Cash, Sydney S; Halgren, Eric; Bazhenov, Maxim.
Afiliação
  • Krishnan GP; Department of Medicine, University of California, San Diego, La Jolla, CA, United States.
  • Chauvette S; Department of Psychiatry and Neuroscience, Université Laval, Québec, Canada.
  • Shamie I; Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval, Québec, Canada.
  • Soltani S; Departments of Radiology and Neurosciences, University of California, San Diego, La Jolla, CA, United States.
  • Timofeev I; Department of Psychiatry and Neuroscience, Université Laval, Québec, Canada.
  • Cash SS; Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval, Québec, Canada.
  • Halgren E; Department of Psychiatry and Neuroscience, Université Laval, Québec, Canada.
  • Bazhenov M; Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval, Québec, Canada.
Elife ; 52016 11 16.
Article em En | MEDLINE | ID: mdl-27849520
ABSTRACT
The link between the combined action of neuromodulators in the brain and global brain states remains a mystery. In this study, using biophysically realistic models of the thalamocortical network, we identified the critical intrinsic and synaptic mechanisms, associated with the putative action of acetylcholine (ACh), GABA and monoamines, which lead to transitions between primary brain vigilance states (waking, non-rapid eye movement sleep [NREM] and REM sleep) within an ultradian cycle. Using ECoG recordings from humans and LFP recordings from cats and mice, we found that during NREM sleep the power of spindle and delta oscillations is negatively correlated in humans and positively correlated in animal recordings. We explained this discrepancy by the differences in the relative level of ACh. Overall, our study revealed the critical intrinsic and synaptic mechanisms through which different neuromodulators acting in combination result in characteristic brain EEG rhythms and transitions between sleep stages.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fases do Sono / Tálamo / Córtex Cerebral / Rede Nervosa Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fases do Sono / Tálamo / Córtex Cerebral / Rede Nervosa Idioma: En Ano de publicação: 2016 Tipo de documento: Article