Your browser doesn't support javascript.
loading
Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes.
Jayant, Krishna; Hirtz, Jan J; Plante, Ilan Jen-La; Tsai, David M; De Boer, Wieteke D A M; Semonche, Alexa; Peterka, Darcy S; Owen, Jonathan S; Sahin, Ozgur; Shepard, Kenneth L; Yuste, Rafael.
Afiliação
  • Jayant K; Department of Electrical Engineering, Columbia University, New York, New York 10027, USA.
  • Hirtz JJ; Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
  • Plante IJ; NeuroTechnology Center, Columbia University, New York, New York 10027, USA.
  • Tsai DM; Kavli Institute of Brain Science, Columbia University, New York, New York 10027, USA.
  • De Boer WD; Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
  • Semonche A; NeuroTechnology Center, Columbia University, New York, New York 10027, USA.
  • Peterka DS; Kavli Institute of Brain Science, Columbia University, New York, New York 10027, USA.
  • Owen JS; Department of Chemistry, Columbia University, New York, New York 10027, USA.
  • Sahin O; Department of Electrical Engineering, Columbia University, New York, New York 10027, USA.
  • Shepard KL; Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
  • Yuste R; NeuroTechnology Center, Columbia University, New York, New York 10027, USA.
Nat Nanotechnol ; 12(4): 335-342, 2017 05.
Article em En | MEDLINE | ID: mdl-27941898
Dendritic spines are the primary site of excitatory synaptic input onto neurons, and are biochemically isolated from the parent dendritic shaft by their thin neck. However, due to the lack of direct electrical recordings from spines, the influence that the neck resistance has on synaptic transmission, and the extent to which spines compartmentalize voltage, specifically excitatory postsynaptic potentials, albeit critical, remains controversial. Here, we use quantum-dot-coated nanopipette electrodes (tip diameters ∼15-30 nm) to establish the first intracellular recordings from targeted spine heads under two-photon visualization. Using simultaneous somato-spine electrical recordings, we find that back propagating action potentials fully invade spines, that excitatory postsynaptic potentials are large in the spine head (mean 26 mV) but are strongly attenuated at the soma (0.5-1 mV) and that the estimated neck resistance (mean 420 MΩ) is large enough to generate significant voltage compartmentalization. Nanopipettes can thus be used to electrically probe biological nanostructures.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Materiais Revestidos Biocompatíveis / Pontos Quânticos / Espinhas Dendríticas / Somação de Potenciais Pós-Sinápticos / Hipocampo Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Materiais Revestidos Biocompatíveis / Pontos Quânticos / Espinhas Dendríticas / Somação de Potenciais Pós-Sinápticos / Hipocampo Idioma: En Ano de publicação: 2017 Tipo de documento: Article