Assembling Enzymatic Cascade Pathways inside Virus-Based Nanocages Using Dual-Tasking Nucleic Acid Tags.
J Am Chem Soc
; 139(4): 1512-1519, 2017 02 01.
Article
em En
| MEDLINE
| ID: mdl-28055188
The packaging of proteins into discrete compartments is an essential feature for cellular efficiency. Inspired by Nature, we harness virus-like assemblies as artificial nanocompartments for enzyme-catalyzed cascade reactions. Using the negative charges of nucleic acid tags, we develop a versatile strategy to promote an efficient noncovalent co-encapsulation of enzymes within a single protein cage of cowpea chlorotic mottle virus (CCMV) at neutral pH. The encapsulation results in stable 21-22 nm sized CCMV-like particles, which is characteristic of an icosahedral T = 1 symmetry. Cryo-EM reconstruction was used to demonstrate the structure of T = 1 assemblies templated by biological soft materials as well as the extra-swelling capacity of these T = 1 capsids. Furthermore, the specific sequence of the DNA tag is capable of operating as a secondary biocatalyst as well as bridging two enzymes for co-encapsulation in a single capsid while maintaining their enzymatic activity. Using CCMV-like particles to mimic nanocompartments can provide valuable insight on the role of biological compartments in enhancing metabolic efficiency.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Fosfogluconato Desidrogenase
/
Ácidos Nucleicos
/
Fosfotransferases (Aceptor do Grupo Álcool)
/
Bromovirus
/
Glucose Oxidase
Idioma:
En
Ano de publicação:
2017
Tipo de documento:
Article