Your browser doesn't support javascript.
loading
SK channel enhancers attenuate Ca2+-dependent arrhythmia in hypertrophic hearts by regulating mito-ROS-dependent oxidation and activity of RyR.
Kim, Tae Yun; Terentyeva, Radmila; Roder, Karim H F; Li, Weiyan; Liu, Man; Greener, Ian; Hamilton, Shanna; Polina, Iuliia; Murphy, Kevin R; Clements, Richard T; Dudley, Samuel C; Koren, Gideon; Choi, Bum-Rak; Terentyev, Dmitry.
Afiliação
  • Kim TY; Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA.
  • Terentyeva R; Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA.
  • Roder KH; Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA.
  • Li W; Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA.
  • Liu M; Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA.
  • Greener I; Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA.
  • Hamilton S; Division of Cancer and Genetics, School of Medicine, Wales Heart Research Institute, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
  • Polina I; Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA.
  • Murphy KR; Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA.
  • Clements RT; Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, The Warren, Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI 02903-4141, USA.
  • Dudley SC; Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA.
  • Koren G; Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA.
  • Choi BR; Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA.
  • Terentyev D; Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 1 Hoppin Street, Providence, RI, 02903-4141, USA.
Cardiovasc Res ; 113(3): 343-353, 2017 03 01.
Article em En | MEDLINE | ID: mdl-28096168
ABSTRACT

Aims:

Plasmamembrane small conductance Ca2+-activated K+ (SK) channels were implicated in ventricular arrhythmias in infarcted and failing hearts. Recently, SK channels were detected in the inner mitochondria membrane (IMM) (mSK), and their activation protected from acute ischaemia-reperfusion injury by reducing intracellular levels of reactive oxygen species (ROS). We hypothesized that mSK play an important role in regulating mitochondrial function in chronic cardiac diseases. We investigated the role of mSK channels in Ca2+-dependent ventricular arrhythmia using rat model of cardiac hypertrophy induced by banding of the ascending aorta thoracic aortic banding (TAB). Methods and

results:

Dual Ca2+ and membrane potential optical mapping of whole hearts derived from TAB rats revealed that membrane-permeable SK enhancer NS309 (2 µM) improved aberrant Ca2+ homeostasis and abolished VT/VF induced by ß-adrenergic stimulation. Using whole cell patch-clamp and confocal Ca2+ imaging of cardiomyocytes derived from TAB hearts (TCMs) we found that membrane-permeable SK enhancers NS309 and CyPPA (10 µM) attenuated frequency of spontaneous Ca2+ waves and delayed afterdepolarizations. Furthermore, mSK inhibition enhanced (UCL-1684, 1 µM); while activation reduced mitochondrial ROS production in TCMs measured with MitoSOX. Protein oxidation assays demonstrated that increased oxidation of ryanodine receptors (RyRs) in TCMs was reversed by SK enhancers. Experiments in permeabilized TCMs showed that SK enhancers restored SR Ca2+ content, suggestive of substantial improvement in RyR function.

Conclusion:

These data suggest that enhancement of mSK channels in hypertrophic rat hearts protects from Ca2+-dependent arrhythmia and suggest that the protection is mediated via decreased mitochondrial ROS and subsequent decreased oxidation of reactive cysteines in RyR, which ultimately leads to stabilization of RyR-mediated Ca2+ release.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Oximas / Arritmias Cardíacas / Pirazóis / Pirimidinas / Espécies Reativas de Oxigênio / Cardiomegalia / Canal de Liberação de Cálcio do Receptor de Rianodina / Sinalização do Cálcio / Miócitos Cardíacos / Canais de Potássio Ativados por Cálcio de Condutância Baixa Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Oximas / Arritmias Cardíacas / Pirazóis / Pirimidinas / Espécies Reativas de Oxigênio / Cardiomegalia / Canal de Liberação de Cálcio do Receptor de Rianodina / Sinalização do Cálcio / Miócitos Cardíacos / Canais de Potássio Ativados por Cálcio de Condutância Baixa Idioma: En Ano de publicação: 2017 Tipo de documento: Article