Your browser doesn't support javascript.
loading
Insight into the local environment of magnesium and calcium in low-coordination-number organo-complexes using 25Mg and 43Ca solid-state NMR: a DFT study.
Gervais, Christel; Jones, Cameron; Bonhomme, Christian; Laurencin, Danielle.
Afiliação
  • Gervais C; Sorbonne Universités, UPMC - Paris 06, Collège de France, UMR CNRS 7574, Laboratoire de Chimie de la Matière Condensée de Paris, 4 place Jussieu, 75252 Paris Cedex 05, France.
  • Jones C; School of Chemistry, Monash University, PO Box 23, Victoria 3800, Australia.
  • Bonhomme C; Sorbonne Universités, UPMC - Paris 06, Collège de France, UMR CNRS 7574, Laboratoire de Chimie de la Matière Condensée de Paris, 4 place Jussieu, 75252 Paris Cedex 05, France.
  • Laurencin D; Institut Charles Gerhardt de Montpellier, UMR5253, CNRS UM ENSCM, CC1701, Pl. E. Bataillon, 34095 Montpellier Cedex 05, France.
Acta Crystallogr C Struct Chem ; 73(Pt 3): 208-218, 2017 Mar 01.
Article em En | MEDLINE | ID: mdl-28257015
With the increasing number of organocalcium and organomagnesium complexes under development, there is a real need to be able to characterize in detail their local environment in order to fully rationalize their reactivity. For crystalline structures, in cases when diffraction techniques are insufficient, additional local spectroscopies like 25Mg and 43Ca solid-state NMR may provide valuable information to help fully establish the local environment of the metal ions. In this current work, a prospective DFT investigation on crystalline magnesium and calcium complexes involving low-coordination numbers and N-bearing organic ligands was carried out, in which the 25Mg and 43Ca NMR parameters [isotropic chemical shift, chemical shift anisotropy (CSA) and quadrupolar parameters] were calculated for each structure. The analysis of the calculated parameters in relation to the local environment of the metal ions revealed that they are highly sensitive to very small changes in geometry/distances, and hence that they could be used to assist in the refinement of crystal structures. Moreover, such calculations provide a guideline as to how the NMR measurements will need to be performed, revealing that these will be very challenging.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article