Your browser doesn't support javascript.
loading
TGF-ß1 stimulates HDAC4 nucleus-to-cytoplasm translocation and NADPH oxidase 4-derived reactive oxygen species in normal human lung fibroblasts.
Guo, Weichao; Saito, Shigeki; Sanchez, Cecilia G; Zhuang, Yan; Gongora Rosero, Rafael E; Shan, Bin; Luo, Fayong; Lasky, Joseph A.
Afiliação
  • Guo W; Department of Medicine, Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University Health Science Center, New Orleans, Louisiana.
  • Saito S; Department of Medicine, Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University Health Science Center, New Orleans, Louisiana.
  • Sanchez CG; Department of Medicine, Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University Health Science Center, New Orleans, Louisiana.
  • Zhuang Y; Department of Medicine, Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University Health Science Center, New Orleans, Louisiana.
  • Gongora Rosero RE; Department of Medicine, Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University Health Science Center, New Orleans, Louisiana.
  • Shan B; College of Medical Sciences, Washington State University-Spokane, Spokane, Washington; and.
  • Luo F; Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas.
  • Lasky JA; Department of Medicine, Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University Health Science Center, New Orleans, Louisiana; jlasky@tulane.edu.
Am J Physiol Lung Cell Mol Physiol ; 312(6): L936-L944, 2017 06 01.
Article em En | MEDLINE | ID: mdl-28336812
ABSTRACT
Myofibroblasts are important mediators of fibrogenesis; thus blocking fibroblast-to-myofibroblast differentiation (FMD) may be an effective strategy to treat pulmonary fibrosis (PF). Previously, we reported that histone deacetylase 4 (HDAC4) activity is necessary for transforming growth factor-ß1 (TGF-ß1)-induced human lung FMD. Here, we show that TGF-ß1 increases NADPH oxidase 4 (NOX4) mRNA and protein expression in normal human lung fibroblasts (NHLFs) and causes nuclear export of HDAC4. Application of the NOX family inhibitor diphenyleneiodonium chloride reduces TGF-ß1-induced HDAC4 nuclear export, expression of the myofibroblast marker α-smooth muscle actin (α-SMA), and α-SMA fiber formation. Inhibition of HDAC4 nucleus-to-cytoplasm translocation using leptomycin B (LMB) had little effect on α-SMA expression but blocked α-SMA fiber formation. A coimmunoprecipitation assay showed that HDAC4 associates with α-SMA. Moreover, LMB abolishes TGF-ß1-induced α-SMA fiber formation and cell contraction. Relevant to human pulmonary fibrosis, idiopathic PF specimens showed significantly higher NOX4 RNA expression and scant HDAC4 staining within nuclei of fibroblast foci myofibroblasts. Taken together, these results indicate that reactive oxygen species promote TGF-ß1-mediated myofibroblast differentiation and HDAC4 nuclear export. The physical association of HDAC4 with α-SMA suggests that HDAC4 has a role in regulating the α-SMA cytoskeleton arrangement.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Repressoras / Núcleo Celular / Espécies Reativas de Oxigênio / NADPH Oxidases / Fator de Crescimento Transformador beta1 / Fibroblastos / Histona Desacetilases / Pulmão Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Repressoras / Núcleo Celular / Espécies Reativas de Oxigênio / NADPH Oxidases / Fator de Crescimento Transformador beta1 / Fibroblastos / Histona Desacetilases / Pulmão Idioma: En Ano de publicação: 2017 Tipo de documento: Article