Selenoprotein T is required for pathogenic bacteria avoidance in Caenorhabditis elegans.
Free Radic Biol Med
; 108: 174-182, 2017 07.
Article
em En
| MEDLINE
| ID: mdl-28347729
Selenoprotein T (SELENOT) is an endoplasmatic reticulum (ER)-associated redoxin that contains the amino acid selenocysteine (Sec, U) within a CXXU motif within a thioredoxin-like fold. Its precise function in multicellular organisms is not completely understood although it has been shown in mammals to be involved in Ca2+ homeostasis, antioxidant and neuroendocrine functions. Here, we use the model organism C. elegans to address SELENOT function in a whole organism throughout its life cycle. C. elegans possess two genes encoding SELENOT protein orthologues (SELT-1.1 and SELT-1.2), which lack Sec and contain the CXXC redox motif instead. Our results show that a SecâCys replacement and a gene duplication were two major evolutionary events that occurred in the nematode lineage. We find that worm SELT-1.1 localizes to the ER and is expressed in different cell types, including the nervous system. In contrast, SELT-1.2 exclusively localizes in the cytoplasm of the AWB neurons. We find that selt-1.1 and selt-1.2 single mutants as well as the double mutant are viable, but the selt-1.1 mutant is compromised under rotenone-induced oxidative stress. We demonstrate that selt-1.1, but not selt-1.2, is required for avoidance to the bacterial pathogens Serratia marcescens and Pseudomonas aeruginosa. Aversion to the noxious signal 2-nonanone is also significantly impaired in selt-1.1, but not in selt-1.2 mutant animals. Our results suggest that selt-1.1 would be a redox transducer required for nociception and optimal organismal fitness. The results highlight C. elegans as a valuable model organism to study SELENOT-dependent processes.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Pseudomonas aeruginosa
/
Infecções por Pseudomonas
/
Serratia marcescens
/
Infecções por Serratia
/
Caenorhabditis elegans
/
Proteínas de Caenorhabditis elegans
/
Retículo Endoplasmático
/
Selenoproteínas
/
Neurônios
Idioma:
En
Ano de publicação:
2017
Tipo de documento:
Article