Your browser doesn't support javascript.
loading
Podosome Force Generation Machinery: A Local Balance between Protrusion at the Core and Traction at the Ring.
Bouissou, Anaïs; Proag, Amsha; Bourg, Nicolas; Pingris, Karine; Cabriel, Clément; Balor, Stéphanie; Mangeat, Thomas; Thibault, Christophe; Vieu, Christophe; Dupuis, Guillaume; Fort, Emmanuel; Lévêque-Fort, Sandrine; Maridonneau-Parini, Isabelle; Poincloux, Renaud.
Afiliação
  • Bouissou A; Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse , CNRS, UPS, Toulouse 31400, France.
  • Proag A; Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse , CNRS, UPS, Toulouse 31400, France.
  • Bourg N; Institut des Sciences Moléculaires d'Orsay, Université Paris-Sud , CNRS UMR8214, Orsay 91405, France.
  • Pingris K; Université Paris-Sud , Centre de Photonique BioMédicale, Fédération LUMAT, CNRS, FR 2764, Orsay 91405, France.
  • Cabriel C; Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse , CNRS, UPS, Toulouse 31400, France.
  • Balor S; Institut des Sciences Moléculaires d'Orsay, Université Paris-Sud , CNRS UMR8214, Orsay 91405, France.
  • Mangeat T; Université Paris-Sud , Centre de Photonique BioMédicale, Fédération LUMAT, CNRS, FR 2764, Orsay 91405, France.
  • Thibault C; METi , Toulouse 31062, France.
  • Vieu C; LBCMCP, Centre de Biologie Intégrative, Université de Toulouse , CNRS, UPS, Toulouse 31062, France.
  • Dupuis G; CNRS, LAAS , Toulouse 31031, France.
  • Fort E; Université de Toulouse , INSA, Toulouse 31077, France.
  • Lévêque-Fort S; CNRS, LAAS , Toulouse 31031, France.
  • Maridonneau-Parini I; Université de Toulouse , INSA, Toulouse 31077, France.
  • Poincloux R; Université Paris-Sud , Centre de Photonique BioMédicale, Fédération LUMAT, CNRS, FR 2764, Orsay 91405, France.
ACS Nano ; 11(4): 4028-4040, 2017 04 25.
Article em En | MEDLINE | ID: mdl-28355484
ABSTRACT
Determining how cells generate and transduce mechanical forces at the nanoscale is a major technical challenge for the understanding of numerous physiological and pathological processes. Podosomes are submicrometer cell structures with a columnar F-actin core surrounded by a ring of adhesion proteins, which possess the singular ability to protrude into and probe the extracellular matrix. Using protrusion force microscopy, we have previously shown that single podosomes produce local nanoscale protrusions on the extracellular environment. However, how cellular forces are distributed to allow this protruding mechanism is still unknown. To investigate the molecular machinery of protrusion force generation, we performed mechanical simulations and developed quantitative image analyses of nanoscale architectural and mechanical measurements. First, in silico modeling showed that the deformations of the substrate made by podosomes require protrusion forces to be balanced by local traction forces at the immediate core periphery where the adhesion ring is located. Second, we showed that three-ring proteins are required for actin polymerization and protrusion force generation. Third, using DONALD, a 3D nanoscopy technique that provides 20 nm isotropic localization precision, we related force generation to the molecular extension of talin within the podosome ring, which requires vinculin and paxillin, indicating that the ring sustains mechanical tension. Our work demonstrates that the ring is a site of tension, balancing protrusion at the core. This local coupling of opposing forces forms the basis of protrusion and reveals the podosome as a nanoscale autonomous force generator.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Podossomos Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Podossomos Idioma: En Ano de publicação: 2017 Tipo de documento: Article