Your browser doesn't support javascript.
loading
Combination therapy with potent PI3K and MAPK inhibitors overcomes adaptive kinome resistance to single agents in preclinical models of glioblastoma.
McNeill, Robert S; Canoutas, Demitra A; Stuhlmiller, Timothy J; Dhruv, Harshil D; Irvin, David M; Bash, Ryan E; Angus, Steven P; Herring, Laura E; Simon, Jeremy M; Skinner, Kasey R; Limas, Juanita C; Chen, Xin; Schmid, Ralf S; Siegel, Marni B; Van Swearingen, Amanda E D; Hadler, Michael J; Sulman, Erik P; Sarkaria, Jann N; Anders, Carey K; Graves, Lee M; Berens, Michael E; Johnson, Gary L; Miller, C Ryan.
Afiliação
  • McNeill RS; Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Cent
  • Canoutas DA; Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Cent
  • Stuhlmiller TJ; Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Cent
  • Dhruv HD; Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Cent
  • Irvin DM; Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Cent
  • Bash RE; Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Cent
  • Angus SP; Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Cent
  • Herring LE; Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Cent
  • Simon JM; Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Cent
  • Skinner KR; Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Cent
  • Limas JC; Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Cent
  • Chen X; Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Cent
  • Schmid RS; Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Cent
  • Siegel MB; Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Cent
  • Van Swearingen AED; Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Cent
  • Hadler MJ; Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Cent
  • Sulman EP; Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Cent
  • Sarkaria JN; Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Cent
  • Anders CK; Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Cent
  • Graves LM; Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Cent
  • Berens ME; Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Cent
  • Johnson GL; Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Cent
  • Miller CR; Pathobiology and Translational Science Graduate Program, Departments of Pathology and Laboratory Medicine, Biology, Pharmacology, Genetics, Medicine, and Neurology, Divisions of Neuropathology and Hematology/Oncology, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Cent
Neuro Oncol ; 19(11): 1469-1480, 2017 Oct 19.
Article em En | MEDLINE | ID: mdl-28379424
ABSTRACT

BACKGROUND:

Glioblastoma (GBM) is the most common and aggressive primary brain tumor. Prognosis remains poor despite multimodal therapy. Developing alternative treatments is essential. Drugs targeting kinases within the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) effectors of receptor tyrosine kinase (RTK) signaling represent promising candidates.

METHODS:

We previously developed a non-germline genetically engineered mouse model of GBM in which PI3K and MAPK are activated via Pten deletion and KrasG12D in immortalized astrocytes. Using this model, we examined the influence of drug potency on target inhibition, alternate pathway activation, efficacy, and synergism of single agent and combination therapy with inhibitors of these 2 pathways. Efficacy was then examined in GBM patient-derived xenografts (PDX) in vitro and in vivo.

RESULTS:

PI3K and mitogen-activated protein kinase kinase (MEK) inhibitor potency was directly associated with target inhibition, alternate RTK effector activation, and efficacy in mutant murine astrocytes in vitro. The kinomes of GBM PDX and tumor samples were heterogeneous, with a subset of the latter harboring MAPK hyperactivation. Dual PI3K/MEK inhibitor treatment overcame alternate effector activation, was synergistic in vitro, and was more effective than single agent therapy in subcutaneous murine allografts. However, efficacy in orthotopic allografts was minimal. This was likely due to dose-limiting toxicity and incomplete target inhibition.

CONCLUSION:

Drug potency influences PI3K/MEK inhibitor-induced target inhibition, adaptive kinome reprogramming, efficacy, and synergy. Our findings suggest that combination therapies with highly potent, brain-penetrant kinase inhibitors will be required to improve patient outcomes.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias Encefálicas / Glioblastoma / Resistencia a Medicamentos Antineoplásicos / Proteínas Quinases Ativadas por Mitógeno / Inibidores de Proteínas Quinases / Inibidores de Fosfoinositídeo-3 Quinase Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias Encefálicas / Glioblastoma / Resistencia a Medicamentos Antineoplásicos / Proteínas Quinases Ativadas por Mitógeno / Inibidores de Proteínas Quinases / Inibidores de Fosfoinositídeo-3 Quinase Idioma: En Ano de publicação: 2017 Tipo de documento: Article