Your browser doesn't support javascript.
loading
Activity of distinct growth factor receptor network components in breast tumors uncovers two biologically relevant subtypes.
Rahman, Mumtahena; MacNeil, Shelley M; Jenkins, David F; Shrestha, Gajendra; Wyatt, Sydney R; McQuerry, Jasmine A; Piccolo, Stephen R; Heiser, Laura M; Gray, Joe W; Johnson, W Evan; Bild, Andrea H.
Afiliação
  • Rahman M; Department of Pharmacology and Toxicology, University of Utah, 30 S 2000 E, Salt Lake City, UT, 84108, USA.
  • MacNeil SM; Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA.
  • Jenkins DF; Department of Pharmacology and Toxicology, University of Utah, 30 S 2000 E, Salt Lake City, UT, 84108, USA.
  • Shrestha G; Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
  • Wyatt SR; Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA.
  • McQuerry JA; Department of Pharmacology and Toxicology, University of Utah, 30 S 2000 E, Salt Lake City, UT, 84108, USA.
  • Piccolo SR; Department of Pharmacology and Toxicology, University of Utah, 30 S 2000 E, Salt Lake City, UT, 84108, USA.
  • Heiser LM; Department of Pharmacology and Toxicology, University of Utah, 30 S 2000 E, Salt Lake City, UT, 84108, USA.
  • Gray JW; Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
  • Johnson WE; Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA.
  • Bild AH; Department of Biology, Brigham Young University, Provo, UT, USA.
Genome Med ; 9(1): 40, 2017 04 26.
Article em En | MEDLINE | ID: mdl-28446242
BACKGROUND: The growth factor receptor network (GFRN) plays a significant role in driving key oncogenic processes. However, assessment of global GFRN activity is challenging due to complex crosstalk among GFRN components, or pathways, and the inability to study complex signaling networks in patient tumors. Here, pathway-specific genomic signatures were used to interrogate GFRN activity in breast tumors and the consequent phenotypic impact of GRFN activity patterns. METHODS: Novel pathway signatures were generated in human primary mammary epithelial cells by overexpressing key genes from GFRN pathways (HER2, IGF1R, AKT1, EGFR, KRAS (G12V), RAF1, BAD). The pathway analysis toolkit Adaptive Signature Selection and InteGratioN (ASSIGN) was used to estimate pathway activity for GFRN components in 1119 breast tumors from The Cancer Genome Atlas (TCGA) and across 55 breast cancer cell lines from the Integrative Cancer Biology Program (ICBP43). These signatures were investigated for their relationship to pro- and anti-apoptotic protein expression and drug response in breast cancer cell lines. RESULTS: Application of these signatures to breast tumor gene expression data identified two novel discrete phenotypes characterized by concordant, aberrant activation of either the HER2, IGF1R, and AKT pathways ("the survival phenotype") or the EGFR, KRAS (G12V), RAF1, and BAD pathways ("the growth phenotype"). These phenotypes described a significant amount of the variability in the total expression data across breast cancer tumors and characterized distinctive patterns in apoptosis evasion and drug response. The growth phenotype expressed lower levels of BIM and higher levels of MCL-1 proteins. Further, the growth phenotype was more sensitive to common chemotherapies and targeted therapies directed at EGFR and MEK. Alternatively, the survival phenotype was more sensitive to drugs inhibiting HER2, PI3K, AKT, and mTOR, but more resistant to chemotherapies. CONCLUSIONS: Gene expression profiling revealed a bifurcation pattern in GFRN activity represented by two discrete phenotypes. These phenotypes correlate to unique mechanisms of apoptosis and drug response and have the potential of pinpointing targetable aberration(s) for more effective breast cancer treatments.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Transdução de Sinais / Regulação Neoplásica da Expressão Gênica / Receptores de Fatores de Crescimento / Genes Neoplásicos Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Transdução de Sinais / Regulação Neoplásica da Expressão Gênica / Receptores de Fatores de Crescimento / Genes Neoplásicos Idioma: En Ano de publicação: 2017 Tipo de documento: Article